Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,913 Bytes
50238b6 4205c96 50238b6 fb080cb 50238b6 c7eecae 50238b6 dab358a 50238b6 429e555 50238b6 429e555 50238b6 98bb16e 50238b6 2d56e6b 50238b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import time
import os
import spaces
try:
from gen2seg_sd_pipeline import gen2segSDPipeline
from gen2seg_mae_pipeline import gen2segMAEInstancePipeline
except ImportError as e:
print(f"Error importing pipeline modules: {e}")
print("Please ensure gen2seg_sd_pipeline.py and gen2seg_mae_pipeline.py are in the same directory.")
# Optionally, raise an error or exit if pipelines are critical at startup
# raise ImportError("Could not import custom pipeline modules. Check file paths.") from e
from transformers import ViTMAEForPreTraining, AutoImageProcessor
# --- Configuration ---
MODEL_IDS = {
"SD": "reachomk/gen2seg-sd",
"MAE-H": "reachomk/gen2seg-mae-h"
}
# Check if a GPU is available and set the device accordingly
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
# --- Global Variables for Caching Pipelines ---
sd_pipe_global = None
mae_pipe_global = None
# --- Model Loading Functions ---
def get_sd_pipeline():
"""Loads and caches the gen2seg Stable Diffusion pipeline."""
global sd_pipe_global
if sd_pipe_global is None:
model_id_sd = MODEL_IDS["SD"]
print(f"Attempting to load SD pipeline from Hugging Face Hub: {model_id_sd}")
try:
sd_pipe_global = gen2segSDPipeline.from_pretrained(
model_id_sd,
use_safetensors=True,
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, # Optional: use float16 on GPU
).to(DEVICE)
print(f"SD Pipeline loaded successfully from {model_id_sd} on {DEVICE}.")
except Exception as e:
print(f"Error loading SD pipeline from Hugging Face Hub ({model_id_sd}): {e}")
sd_pipe_global = None # Ensure it remains None on failure
# Do not raise gr.Error here; let the main function handle it.
return sd_pipe_global
def get_mae_pipeline():
"""Loads and caches the gen2seg MAE-H pipeline."""
global mae_pipe_global
if mae_pipe_global is None:
model_id_mae = MODEL_IDS["MAE-H"]
print(f"Loading MAE-H pipeline with model {model_id_mae} on {DEVICE}...")
try:
model = ViTMAEForPreTraining.from_pretrained(model_id_mae)
model.to(DEVICE)
model.eval() # Set to evaluation mode
# Load the official MAE-H image processor
# Using "facebook/vit-mae-huge" as per the original app_mae.py
image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-huge")
mae_pipe_global = gen2segMAEInstancePipeline(model=model, image_processor=image_processor)
# The custom MAE pipeline's model is already on the DEVICE.
print(f"MAE-H Pipeline with model {model_id_mae} loaded successfully on {DEVICE}.")
except Exception as e:
print(f"Error loading MAE-H model or pipeline from Hugging Face Hub ({model_id_mae}): {e}")
mae_pipe_global = None # Ensure it remains None on failure
# Do not raise gr.Error here; let the main function handle it.
return mae_pipe_global
# --- Unified Prediction Function ---
@spaces.GPU(duration=90)
def segment_image(input_image: Image.Image, model_choice: str) -> Image.Image:
"""
Takes a PIL Image and model choice, performs segmentation, and returns the segmented image.
"""
if input_image is None:
raise gr.Error("No image provided. Please upload an image.")
print(f"Model selected: {model_choice}")
# Ensure image is in RGB format
image_rgb = input_image.convert("RGB")
original_resolution = image_rgb.size # (width, height)
seg_array = None
try:
if model_choice == "SD":
pipe_sd = get_sd_pipeline()
if pipe_sd is None:
raise gr.Error("The SD segmentation pipeline could not be loaded. "
"Please check the Space logs for more details, or try again later.")
print(f"Running SD inference with image size: {image_rgb.size}")
start_time = time.time()
with torch.no_grad():
# The gen2segSDPipeline expects a single image or a list
# The pipeline's __call__ method handles preprocessing internally
seg_output = pipe_sd(image_rgb, match_input_resolution=False).prediction # Output is before resize
# seg_output is expected to be a numpy array (N,H,W,1) or (N,1,H,W) or tensor
# Based on gen2seg_sd_pipeline.py, if output_type="np" (default), it's [N,H,W,1]
# If output_type="pt", it's [N,1,H,W]
# The original app_sd.py converted tensor to numpy and squeezed.
if isinstance(seg_output, torch.Tensor):
seg_output = seg_output.cpu().numpy()
if seg_output.ndim == 4 and seg_output.shape[0] == 1: # Batch size 1
if seg_output.shape[1] == 1: # Grayscale, (1, 1, H, W)
seg_array = seg_output.squeeze(0).squeeze(0).astype(np.uint8)
elif seg_output.shape[-1] == 1: # Grayscale, (1, H, W, 1)
seg_array = seg_output.squeeze(0).squeeze(-1).astype(np.uint8)
elif seg_output.shape[1] == 3: # RGB, (1, 3, H, W) -> (H, W, 3)
seg_array = np.transpose(seg_output.squeeze(0), (1, 2, 0)).astype(np.uint8)
elif seg_output.shape[-1] == 3: # RGB, (1, H, W, 3)
seg_array = seg_output.squeeze(0).astype(np.uint8)
else: # Fallback for unexpected shapes
seg_array = seg_output.squeeze().astype(np.uint8)
elif seg_output.ndim == 3: # (H, W, C) or (C, H, W)
seg_array = seg_output.astype(np.uint8)
elif seg_output.ndim == 2: # (H,W)
seg_array = seg_output.astype(np.uint8)
else:
raise TypeError(f"Unexpected SD segmentation output type/shape: {type(seg_output)}, {seg_output.shape}")
end_time = time.time()
print(f"SD Inference completed in {end_time - start_time:.2f} seconds.")
elif model_choice == "MAE-H":
pipe_mae = get_mae_pipeline()
if pipe_mae is None:
raise gr.Error("The MAE-H segmentation pipeline could not be loaded. "
"Please check the Space logs for more details, or try again later.")
print(f"Running MAE-H inference with image size: {image_rgb.size}")
start_time = time.time()
with torch.no_grad():
# The gen2segMAEInstancePipeline expects a list of images
# output_type="np" returns a NumPy array
pipe_output = pipe_mae([image_rgb], output_type="np")
# Prediction is (batch_size, height, width, 3) for MAE
prediction_np = pipe_output.prediction[0] # Get the first (and only) image prediction
end_time = time.time()
print(f"MAE-H Inference completed in {end_time - start_time:.2f} seconds.")
if not isinstance(prediction_np, np.ndarray):
# This case should ideally not be reached if output_type="np"
prediction_np = prediction_np.cpu().numpy()
# Ensure it's in the expected (H, W, C) format and uint8
if prediction_np.ndim == 3 and prediction_np.shape[-1] == 3: # Expected (H, W, 3)
seg_array = prediction_np.astype(np.uint8)
else:
# Attempt to handle other shapes if necessary, or raise error
raise gr.Error(f"Unexpected MAE-H prediction shape: {prediction_np.shape}. Expected (H, W, 3).")
# The MAE pipeline already does gamma correction and scaling to 0-255.
# It also ensures 3 channels.
else:
raise gr.Error(f"Invalid model choice: {model_choice}. Please select a valid model.")
if seg_array is None:
raise gr.Error("Segmentation array was not generated. An unknown error occurred.")
print(f"Segmentation array generated with shape: {seg_array.shape}, dtype: {seg_array.dtype}")
# Convert numpy array to PIL Image
# Handle grayscale or RGB based on seg_array channels
if seg_array.ndim == 2: # Grayscale
segmented_image_pil = Image.fromarray(seg_array, mode='L')
elif seg_array.ndim == 3 and seg_array.shape[-1] == 3: # RGB
segmented_image_pil = Image.fromarray(seg_array, mode='RGB')
elif seg_array.ndim == 3 and seg_array.shape[-1] == 1: # Grayscale with channel dim
segmented_image_pil = Image.fromarray(seg_array.squeeze(-1), mode='L')
else:
raise gr.Error(f"Cannot convert seg_array with shape {seg_array.shape} to PIL Image.")
# Resize back to original image resolution using LANCZOS for high quality
segmented_image_pil = segmented_image_pil.resize(original_resolution, Image.Resampling.LANCZOS)
print(f"Segmented image processed. Output size: {segmented_image_pil.size}, mode: {segmented_image_pil.mode}")
return segmented_image_pil
except Exception as e:
print(f"Error during segmentation with {model_choice}: {e}")
# Re-raise as gr.Error for Gradio to display, if not already one
if not isinstance(e, gr.Error):
# It's often helpful to include the type of the original exception
error_type = type(e).__name__
raise gr.Error(f"An error occurred during segmentation: {error_type} - {str(e)}")
else:
raise e # Re-raise if it's already a gr.Error
# --- Gradio Interface ---
title = "gen2seg: Generative Models Enable Generalizable Instance Segmentation Demo (SD & MAE-H)"
description = f"""
<div style="text-align: center; font-family: 'Arial', sans-serif;">
<p>Upload an image and choose a model architecture to see the instance segmentation result generated by the respective model. </p>
<p>
BIG THANKS to Huggingface for funding our demo with their Academic GPU Grant!
</p>
<ul>
<li><strong>SD</strong>: Based on Stable Diffusion 2.
<a href="https://huggingface.co/{MODEL_IDS['SD']}" target="_blank">Model Link</a>.
</li>
<li><strong>MAE-H</strong>: Based on Masked Autoencoder (Huge).
<a href="https://huggingface.co/{MODEL_IDS['MAE-H']}" target="_blank">Model Link</a>.
If you experience tokenizer artifacts or very dark images, you can use gamma correction to handle this.
</li>
</ul>
<p>
Paper: <a href="https://arxiv.org/abs/2505.15263">https://arxiv.org/abs/2505.15263</a>
</p>
<p>
For faster inference, please check out our GitHub to run the models locally on a GPU:
<a href="https://github.com/UCDvision/gen2seg" target="_blank">https://github.com/UCDvision/gen2seg</a> or check out our Colab demo <a href="https://colab.research.google.com/drive/10lPBP4figJf7MLp9T1b5cDQeU7MgODw3?usp=sharing" target="_blank">here</a>.
</p>
<p>If the demo experiences issues, please open an issue on our GitHub.</p>
<p> If you have not already, please see our webpage at <a href="https://reachomk.github.io/gen2seg" target="_blank">https://reachomk.github.io/gen2seg</a>.
</div>
"""
article = """
"""
# Define Gradio inputs
input_image_component = gr.Image(type="pil", label="Input Image")
model_choice_component = gr.Dropdown(
choices=list(MODEL_IDS.keys()),
value="SD", # Default model
label="Choose Segmentation Model Architecture"
)
# Define Gradio output
output_image_component = gr.Image(type="pil", label="Segmented Image")
# Example images (ensure these paths are correct if you upload examples to your Space)
# For example, if you create an "examples" folder in your Space repo:
# example_paths = [
# os.path.join("examples", "example1.jpg"),
# os.path.join("examples", "example2.png")
# ]
# Filter out non-existent example files to prevent errors
# example_paths = [ex for ex in example_paths if os.path.exists(ex)]
# Base list of example image paths/URLs
base_example_images = [
"cats-on-rock-1948.jpg",
"dogs.png",
"000000484893.jpg",
"https://reachomk.github.io/gen2seg/images/comparison/vertical/7.png",
"https://reachomk.github.io/gen2seg/images/comparison/horizontal/11.png",
"https://reachomk.github.io/gen2seg/images/comparison/vertical/2.jpg"
]
# Generate examples for each image with both model choices
model_choices_for_examples = list(MODEL_IDS.keys()) # ["SD", "MAE-H"]
formatted_examples = []
for img_path_or_url in base_example_images:
for model_choice in model_choices_for_examples:
formatted_examples.append([img_path_or_url, model_choice])
iface = gr.Interface(
fn=segment_image,
inputs=[input_image_component, model_choice_component],
outputs=output_image_component,
title=title,
description=description,
article=article,
examples=None, #formatted_examples if formatted_examples else None,
allow_flagging="never",
theme="shivi/calm_seafoam"
)
if __name__ == "__main__":
# Optional: Pre-load a default model on startup if desired.
# This can make the first inference faster but increases startup time.
# print("Attempting to pre-load default SD model on startup...")
try:
get_sd_pipeline() # Pre-load the default SD model
print("Default SD model pre-loaded successfully or was already cached.")
except Exception as e:
print(f"Could not pre-load default SD model: {e}")
print("Launching Gradio interface...")
iface.launch()
|