File size: 6,370 Bytes
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
9c5c95e
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
 
9c5c95e
 
 
ffa45e8
 
 
 
 
 
 
9c5c95e
ffa45e8
 
 
 
9c5c95e
ffa45e8
 
 
9c5c95e
 
ffa45e8
9c5c95e
ffa45e8
 
 
9c5c95e
1c5be4e
ffa45e8
 
 
 
 
 
 
 
 
 
9c5c95e
 
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5c95e
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5c95e
 
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from __future__ import annotations

import datetime
import os
import pathlib
import shlex
import shutil
import subprocess

import gradio as gr
import slugify
import torch
from PIL import Image
from huggingface_hub import HfApi

from app_upload import ModelUploader
from utils import save_model_card

URL_TO_JOIN_LIBRARY_ORG = 'https://huggingface.co/organizations/realfill-library/share/WctmaLvDHWxnuWoJxagTrzVXbGwxoqoJoG'

class Trainer:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token
        self.api = HfApi(token=hf_token)
        self.model_uploader = ModelUploader(hf_token)

    def prepare_dataset(self, reference_images: list,
                        target_image: Image.Image, target_mask: Image.Image,
                        train_data_dir: pathlib.Path, output_dir: pathlib.Path) -> None:
        shutil.rmtree(train_data_dir, ignore_errors=True)
        train_data_dir.mkdir(parents=True)
        
        (train_data_dir / 'ref').mkdir(parents=True)
        (train_data_dir / 'target').mkdir(parents=True)

        for i, temp_path in enumerate(reference_images):
            image = Image.open(temp_path.name)
            image = image.convert('RGB')
            out_path = train_data_dir / 'ref' / f'{i:03d}.jpg'
            image.save(out_path, format='JPEG', quality=100)

        target_image = Image.open(target_image[0].name)
        target_image = target_image.convert('RGB')
        out_path = train_data_dir / 'target' / f'target.jpg'
        target_image.save(out_path, format='JPEG', quality=100)
        out_path = output_dir / f'target.jpg'
        target_image.save(out_path, format='JPEG', quality=100)

        target_mask = Image.open(target_mask[0].name)
        target_mask = target_mask.convert('L')
        out_path = train_data_dir / 'target' / f'mask.jpg'
        target_mask.save(out_path, format='JPEG', quality=100)
        out_path = output_dir / f'mask.jpg'
        target_mask.save(out_path, format='JPEG', quality=100)

    def join_library_org(self) -> None:
        subprocess.run(
            shlex.split(
                f'curl -X POST -H "Authorization: Bearer {self.hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_LIBRARY_ORG}'
            ))

    def run(
        self,
        reference_images: list | None,
        target_image: Image.Image | None,
        target_mask: Image.Image | None,
        output_model_name: str,
        overwrite_existing_model: bool,
        base_model: str,
        resolution_s: str,
        n_steps: int,
        unet_learning_rate: float,
        text_encoder_learning_rate: float,
        lora_rank: int,
        lora_dropout: float,
        lora_alpha: int,
        gradient_accumulation: int,
        seed: int,
        fp16: bool,
        use_8bit_adam: bool,
        checkpointing_steps: int,
        use_wandb: bool,
        validation_steps: int,
        upload_to_hub: bool,
        use_private_repo: bool,
        delete_existing_repo: bool,
        upload_to: str,
        remove_gpu_after_training: bool,
    ) -> str:
        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')
        if reference_images is None:
            raise gr.Error('You need to upload reference images.')
        if target_image is None:
            raise gr.Error('The instance prompt is missing.')

        resolution = int(resolution_s)

        if not output_model_name:
            timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
            output_model_name = f'realfill-{timestamp}'
        output_model_name = slugify.slugify(output_model_name)

        repo_dir = pathlib.Path(__file__).parent
        output_dir = repo_dir / 'experiments' / output_model_name
        if overwrite_existing_model or upload_to_hub:
            shutil.rmtree(output_dir, ignore_errors=True)
        output_dir.mkdir(parents=True)

        train_data_dir = repo_dir / 'training_data' / output_model_name
        self.prepare_dataset(reference_images, target_image, target_mask, train_data_dir, output_dir)

        if upload_to_hub:
            self.join_library_org()

        command = f'''
        python train_realfill.py \
          --pretrained_model_name_or_path={base_model}  \
          --train_data_dir={train_data_dir} \
          --output_dir={output_dir} \
          --resolution={resolution} \
          --train_batch_size=16 \
          --gradient_accumulation_steps={gradient_accumulation} --gradient_checkpointing \
          --unet_learning_rate={unet_learning_rate} \
          --text_encoder_learning_rate={text_encoder_learning_rate} \
          --lr_scheduler=constant \
          --lr_warmup_steps=100 \
          --set_grads_to_none \
          --max_train_steps={n_steps} \
          --checkpointing_steps={checkpointing_steps} \
          --validation_steps={validation_steps} \
          --lora_rank={lora_rank} \
          --lora_dropout={lora_dropout} \
          --lora_alpha={lora_alpha} \
          --seed={seed}
        '''
        if fp16:
            command += ' --mixed_precision fp16'
        if use_8bit_adam:
            command += ' --use_8bit_adam'
        if use_wandb:
            command += ' --report_to wandb'

        with open(output_dir / 'train.sh', 'w') as f:
            command_s = ' '.join(command.split())
            f.write(command_s)
        subprocess.run(shlex.split(command))
        save_model_card(save_dir=output_dir,
                        base_model=base_model,
                        target_image=output_dir / 'target.jpg',
                        target_mask=output_dir / 'mask.jpg')

        message = 'Training completed!'
        print(message)

        if upload_to_hub:
            upload_message = self.model_uploader.upload_model(
                folder_path=output_dir.as_posix(),
                repo_name=output_model_name,
                upload_to=upload_to,
                private=use_private_repo,
                delete_existing_repo=delete_existing_repo)
            print(upload_message)
            message = message + '\n' + upload_message

        if remove_gpu_after_training:
            space_id = os.getenv('SPACE_ID')
            if space_id:
                self.api.request_space_hardware(repo_id=space_id,
                                                hardware='cpu-basic')

        return message