File size: 4,332 Bytes
6df3345
a232a8d
6df3345
 
 
 
 
 
 
a232a8d
6df3345
 
 
a232a8d
6df3345
 
 
a232a8d
6df3345
 
 
 
 
 
 
 
 
 
 
 
 
 
a232a8d
6df3345
 
 
 
 
a232a8d
6df3345
 
 
 
 
 
a232a8d
6df3345
 
 
 
 
 
 
a232a8d
6df3345
 
 
 
a232a8d
 
6df3345
 
 
 
 
 
 
a232a8d
 
6df3345
 
 
 
 
 
 
 
 
 
a232a8d
6df3345
 
 
a232a8d
6df3345
 
 
 
 
 
 
 
 
 
 
a232a8d
6df3345
 
 
 
 
 
 
 
 
 
 
 
 
 
a232a8d
6df3345
 
 
 
 
 
 
a232a8d
 
6df3345
 
a232a8d
 
6df3345
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python

import os
from threading import Thread
from typing import Iterator
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))

model_id = "utter-project/EuroLLM-1.7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.06,
    top_p: float = 0.95,
    top_k: int = 40,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(height=450,
                      label="utter-project/EuroLLM-1.7B-Instruct",
                      show_share_button=True,
                      ),
    cache_examples=False,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.05,
            maximum=1.2,
            step=0.05,
            value=0.2,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    examples=[
        ["Describe the significance of the Eiffel Tower in French culture and history."],
        ["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"],  # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature?
        ["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"],  # Polish: What are the most well-known Polish Christmas traditions?
        ["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"],  # German: What role did the Hanseatic League play in medieval Europe?
        ["日本の茶道の精神と作法について説明してください。"]  # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony.
    ],
    title="utter-project/EuroLLM-1.7B-Instruct",
    description="""utter-project/EuroLLM-1.7B-Instruct quick demo""",
    submit_btn="Generate",
    stop_btn="Stop",
    retry_btn="🔄 Retry",
    undo_btn="↩️ Undo",
    clear_btn="🗑️ Clear",
)

with gr.Blocks(css="style.css") as demo:
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()