File size: 41,728 Bytes
a8994db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 0. Preparación del notebook e inicialización del cliente de OpenAI API"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"API key: sk-proj-****************************************************************************************************************************************************-amA_5sA\n",
"Cliente inicializado como <openai.OpenAI object at 0x0000011B3A4D3790>\n"
]
}
],
"source": [
"import os\n",
"import pandas as pd\n",
"import json\n",
"import textwrap\n",
"from datetime import datetime\n",
"from openai import OpenAI\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(\"../../../../../../../apis/.env\")\n",
"api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"unmasked_chars = 8\n",
"masked_key = api_key[:unmasked_chars] + '*' * (len(api_key) - unmasked_chars*2) + api_key[-unmasked_chars:]\n",
"print(f\"API key: {masked_key}\")\n",
"client = OpenAI(api_key=api_key)\n",
"print(\"Cliente inicializado como\",client)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Zero-shot named entity recognition"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Empezamos con un caso sencillo extrayendo un texto del CV de ejemplo y sin especificar esquema para el diccionario de datos json:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\"\n",
"}\n"
]
}
],
"source": [
"text = \"Vendedor/a de puesto de mercado - Mercadona\"\n",
"# System prompt para reconocimiento de entidades nombradas (NER) de nombres de compañías y títulos de puestos de trabajo\n",
"ner_pre_prompt = (\n",
" \"Eres un procesador de currículos vitae que extrae nombres de \"\n",
" \"compañías/empresas y títulos de puestos de trabajo. Usa formato json en la salida \"\n",
" 'con las claves \"empresa\" y \"puesto\".'\n",
")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" response_format={\"type\": \"json_object\"}, # De momento no facilitamos esquema. Lo probaremos más adelante.\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
" {\"role\": \"user\", \"content\": text}\n",
" ]\n",
" )\n",
"generated_content = response.choices[0].message.content\n",
"print(generated_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ejemplo de reconocimiento de entidades nombradas en un currículo completo. Hemos utilizado un CV de ejemplo no incluido en el repositorio. Para ejecutar el siguiente bloque, es necesario facilitar una ruta válida a un currículo:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Candidato: Mohamed van der Poel Mendieta\n",
"Último Puesto Comercial de automoviles\n",
"Última formación reglada FP 1 / Técnico medio\n",
"3\n",
"Idioma EspañolInglésFr ...\n"
]
}
],
"source": [
"cv_sample_path = '../../ejemplos_cvs/cv_sample.txt' # Ruta al fichero de texto con un currículo de ejemplo \n",
"with open(cv_sample_path, 'r') as file:\n",
" cv_text = file.read()\n",
"print(cv_text[:150],\"...\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inferencia de entidades nombradas \"empresa\" y \"puesto\" con un modelo de OpenAI (elegimos gpt-4o-mini para reducir los costes y dado que esto sólo es una sencilla prueba de concepto)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"experiencias\": [\n",
" {\n",
" \"empresa\": \"Autónomo\",\n",
" \"puesto\": \"Comercial de automoviles\"\n",
" },\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\"\n",
" },\n",
" {\n",
" \"empresa\": \"AGRISOLUTIONS\",\n",
" \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\"\n",
" },\n",
" {\n",
" \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
" \"puesto\": \"Camarero/a de barra\"\n",
" },\n",
" {\n",
" \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
" \"puesto\": \"Limpieza industrial\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bellota Herramientas\",\n",
" \"puesto\": \"Personal de mantenimiento\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" response_format={\"type\": \"json_object\"},\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
" {\"role\": \"user\", \"content\": cv_text}\n",
" ]\n",
" )\n",
"generated_content = response.choices[0].message.content\n",
"print(generated_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Procesamiento de fechas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Vamos a intentar extraer también las fechas para cada puesto de trabajo. Para ello, añadiremos algunas indicaciones adicionales en relación a los posibles formatos de entrada y al formato de salida. En cuanto a las entradas, asumimos que cada CV puede tener formatos muy distintos para esta información. Para las salidas, queremos un formato que nos facilite posteriormente realizar cálculos con fechas como la duración total, antigüedad con respecto a fecha actual, etc."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, nombres de la\n",
"empresa, y períodos de los mismos. Usa formato json en la salida con las claves \"empresa\", \"puesto\"\n",
"y \"periodo\". Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el\n",
"texto. Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". Otros ejemplos\n",
"de formatos de fecha son \"10/2023 - 03/2024\", \"Oct 2023 - Mar 2024\", etc. El contenido para la clave\n",
"\"período\" debe ser un string con dos elementos en formato YYYYMM separados por un guion, por ejemplo\n",
"\"202310-202403\", o uno en caso de no identificarse fecha de fin.\n"
]
}
],
"source": [
"explicacion_fechas = (\n",
" 'Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el texto. '\n",
" 'Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". Otros ejemplos de '\n",
" 'formatos de fecha son \"10/2023 - 03/2024\", \"Oct 2023 - Mar 2024\", etc. '\n",
" 'El contenido para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM '\n",
" 'separados por un guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.'\n",
" )\n",
"\n",
"ner_pre_prompt = (\n",
" 'Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, '\n",
" 'nombres de la empresa, y períodos de los mismos. Usa formato json en la salida '\n",
" f'con las claves \"empresa\", \"puesto\" y \"periodo\". {explicacion_fechas}'\n",
")\n",
"wrapped_ner_pre_prompt = textwrap.fill(ner_pre_prompt, width=100)\n",
"print(wrapped_ner_pre_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"experiencia\": [\n",
" {\n",
" \"empresa\": \"Autónomo\",\n",
" \"puesto\": \"Comercial de automoviles\",\n",
" \"periodo\": \"202401-202402\"\n",
" },\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
" \"periodo\": \"202310-202403\"\n",
" },\n",
" {\n",
" \"empresa\": \"AGRISOLUTIONS\",\n",
" \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
" \"periodo\": \"202001-202401\"\n",
" },\n",
" {\n",
" \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
" \"puesto\": \"Camarero/a de barra\",\n",
" \"periodo\": \"202303-202309\"\n",
" },\n",
" {\n",
" \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
" \"puesto\": \"limpieza industrial\",\n",
" \"periodo\": \"202012-202305\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bellota Herramientas\",\n",
" \"puesto\": \"Personal de mantenimiento\",\n",
" \"periodo\": \"202005-202011\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" response_format={\"type\": \"json_object\"},\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
" {\"role\": \"user\", \"content\": cv_text}\n",
" ]\n",
" )\n",
"generated_content = response.choices[0].message.content\n",
"print(generated_content)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>empresa</th>\n",
" <th>puesto</th>\n",
" <th>periodo</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Autónomo</td>\n",
" <td>Comercial de automoviles</td>\n",
" <td>202401-202402</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Mercadona</td>\n",
" <td>Vendedor/a de puesto de mercado</td>\n",
" <td>202310-202403</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AGRISOLUTIONS</td>\n",
" <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
" <td>202001-202401</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>GASTROTEKA ORDIZIA 1990</td>\n",
" <td>Camarero/a de barra</td>\n",
" <td>202303-202309</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>ZEREGUIN ZERBITZUAK</td>\n",
" <td>limpieza industrial</td>\n",
" <td>202012-202305</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Bellota Herramientas</td>\n",
" <td>Personal de mantenimiento</td>\n",
" <td>202005-202011</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" empresa puesto \\\n",
"0 Autónomo Comercial de automoviles \n",
"1 Mercadona Vendedor/a de puesto de mercado \n",
"2 AGRISOLUTIONS AUXILIAR DE MANTENIMIENTO INDUSTRIAL \n",
"3 GASTROTEKA ORDIZIA 1990 Camarero/a de barra \n",
"4 ZEREGUIN ZERBITZUAK limpieza industrial \n",
"5 Bellota Herramientas Personal de mantenimiento \n",
"\n",
" periodo \n",
"0 202401-202402 \n",
"1 202310-202403 \n",
"2 202001-202401 \n",
"3 202303-202309 \n",
"4 202012-202305 \n",
"5 202005-202011 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Convertimos el texto en un objeto JSON\n",
"json_object = json.loads(generated_content)\n",
"# Convertimos a Pandas dataframe para realizar operaciones\n",
"# Aún no hemos especificado el esquema completo (a veces puede ser que el modelo nos dé \"experiencias\" en lugar de \"experiencia\")\n",
"df = pd.DataFrame(json_object[\"experiencia\"]) \n",
"display(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Antes de desarrollar el código para la extracción y tratamiento de fechas, vamos a comprobar si el modelo es capaz de procesar correctamente un puesto sin fecha de fin en el período. Vamos a eliminar la fecha de fin en el puesto \"comercial de automóviles\" y guardarlo en '../../ejemplos_cvs/cv_sample_2.txt' (esta ruta no está incluida en el repositorio)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"### Ejemplo original ###\n",
"...\n",
"Sexo Hombre\n",
"Experiencia\n",
"Enero 2024 / Febrero 2024\n",
"Comercial de automoviles - Autónomo\n",
"...\n",
"\n",
"### Ejemplo modificado ###\n",
"...\n",
"Sexo Hombre\n",
"Experiencia\n",
"Enero 2024\n",
"Comercial de automoviles - Autónomo\n",
"...\n"
]
}
],
"source": [
"cv_sample_2_path = '../../ejemplos_cvs/cv_sample_2.txt'\n",
"with open(cv_sample_2_path, 'r') as file:\n",
" cv_text_2 = file.read()\n",
"print(f\"### Ejemplo original ###\\n...\\n{cv_text[301:386]}\\n...\")\n",
"print(f\"\\n### Ejemplo modificado ###\\n...\\n{cv_text_2[301:371]}\\n...\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Volvemos a pedir la inferencia con el CV modificado:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"experiencia\": [\n",
" {\n",
" \"empresa\": \"Autónomo\",\n",
" \"puesto\": \"Comercial de automoviles\",\n",
" \"periodo\": \"202401\"\n",
" },\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
" \"periodo\": \"202310-202404\"\n",
" },\n",
" {\n",
" \"empresa\": \"AGRISOLUTIONS\",\n",
" \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
" \"periodo\": \"202001-202401\"\n",
" },\n",
" {\n",
" \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
" \"puesto\": \"Camarero/a de barra\",\n",
" \"periodo\": \"202303-202309\"\n",
" },\n",
" {\n",
" \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
" \"puesto\": \"limpieza industrial\",\n",
" \"periodo\": \"202012-202305\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bellota Herramientas\",\n",
" \"puesto\": \"Personal de mantenimiento\",\n",
" \"periodo\": \"202005-202011\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" response_format={\"type\": \"json_object\"},\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
" {\"role\": \"user\", \"content\": cv_text_2} # Sin fecha de fin en la última experiencia\n",
" ]\n",
" )\n",
"generated_content = response.choices[0].message.content\n",
"print(generated_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Vemos que el modelo gpt-4o-mini parece suficientemente solvente procesando e interpretando datos no estructurados como fechas. En un caso de uso real en el que dispongamos de muchos ficheros de entrada, podríamos entrenar un modelo de \"named entity recognition\" más sofisticado para asegurar mayor precisión. \n",
"\n",
"<br> A continuación, procedemos a tratar las fechas para definir un parámetro de duración del puesto de trabajo: "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>empresa</th>\n",
" <th>puesto</th>\n",
" <th>periodo</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Autónomo</td>\n",
" <td>Comercial de automoviles</td>\n",
" <td>202401</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Mercadona</td>\n",
" <td>Vendedor/a de puesto de mercado</td>\n",
" <td>202310-202404</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AGRISOLUTIONS</td>\n",
" <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
" <td>202001-202401</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>GASTROTEKA ORDIZIA 1990</td>\n",
" <td>Camarero/a de barra</td>\n",
" <td>202303-202309</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>ZEREGUIN ZERBITZUAK</td>\n",
" <td>limpieza industrial</td>\n",
" <td>202012-202305</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Bellota Herramientas</td>\n",
" <td>Personal de mantenimiento</td>\n",
" <td>202005-202011</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" empresa puesto \\\n",
"0 Autónomo Comercial de automoviles \n",
"1 Mercadona Vendedor/a de puesto de mercado \n",
"2 AGRISOLUTIONS AUXILIAR DE MANTENIMIENTO INDUSTRIAL \n",
"3 GASTROTEKA ORDIZIA 1990 Camarero/a de barra \n",
"4 ZEREGUIN ZERBITZUAK limpieza industrial \n",
"5 Bellota Herramientas Personal de mantenimiento \n",
"\n",
" periodo \n",
"0 202401 \n",
"1 202310-202404 \n",
"2 202001-202401 \n",
"3 202303-202309 \n",
"4 202012-202305 \n",
"5 202005-202011 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Convertimos el texto en un objeto JSON\n",
"json_object = json.loads(generated_content)\n",
"# Convertimos a Pandas dataframe para realizar operaciones\n",
"df_experiencia = pd.DataFrame(json_object[\"experiencia\"])\n",
"display(df_experiencia)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>empresa</th>\n",
" <th>puesto</th>\n",
" <th>periodo</th>\n",
" <th>fec_inicio</th>\n",
" <th>fec_final</th>\n",
" <th>duracion</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Autónomo</td>\n",
" <td>Comercial de automoviles</td>\n",
" <td>202401</td>\n",
" <td>2024-01-01</td>\n",
" <td>2024-12-08</td>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Mercadona</td>\n",
" <td>Vendedor/a de puesto de mercado</td>\n",
" <td>202310-202404</td>\n",
" <td>2023-10-01</td>\n",
" <td>2024-04-01</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AGRISOLUTIONS</td>\n",
" <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
" <td>202001-202401</td>\n",
" <td>2020-01-01</td>\n",
" <td>2024-01-01</td>\n",
" <td>48</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>GASTROTEKA ORDIZIA 1990</td>\n",
" <td>Camarero/a de barra</td>\n",
" <td>202303-202309</td>\n",
" <td>2023-03-01</td>\n",
" <td>2023-09-01</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>ZEREGUIN ZERBITZUAK</td>\n",
" <td>limpieza industrial</td>\n",
" <td>202012-202305</td>\n",
" <td>2020-12-01</td>\n",
" <td>2023-05-01</td>\n",
" <td>29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Bellota Herramientas</td>\n",
" <td>Personal de mantenimiento</td>\n",
" <td>202005-202011</td>\n",
" <td>2020-05-01</td>\n",
" <td>2020-11-01</td>\n",
" <td>6</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" empresa puesto \\\n",
"0 Autónomo Comercial de automoviles \n",
"1 Mercadona Vendedor/a de puesto de mercado \n",
"2 AGRISOLUTIONS AUXILIAR DE MANTENIMIENTO INDUSTRIAL \n",
"3 GASTROTEKA ORDIZIA 1990 Camarero/a de barra \n",
"4 ZEREGUIN ZERBITZUAK limpieza industrial \n",
"5 Bellota Herramientas Personal de mantenimiento \n",
"\n",
" periodo fec_inicio fec_final duracion \n",
"0 202401 2024-01-01 2024-12-08 11 \n",
"1 202310-202404 2023-10-01 2024-04-01 6 \n",
"2 202001-202401 2020-01-01 2024-01-01 48 \n",
"3 202303-202309 2023-03-01 2023-09-01 6 \n",
"4 202012-202305 2020-12-01 2023-05-01 29 \n",
"5 202005-202011 2020-05-01 2020-11-01 6 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Función para procesar el período\n",
"def split_periodo(periodo):\n",
" dates = periodo.split('-')\n",
" start_date = datetime.strptime(dates[0], \"%Y%m\")\n",
" if len(dates) > 1:\n",
" end_date = datetime.strptime(dates[1], \"%Y%m\")\n",
" else:\n",
" end_date = datetime.now()\n",
" return start_date, end_date\n",
"\n",
"df_experiencia[['fec_inicio', 'fec_final']] = df_experiencia['periodo'].apply(lambda x: pd.Series(split_periodo(x)))\n",
"\n",
"# Formateamos las fechas para mostrar mes, año, y el primer día del mes (dado que el día es irrelevante y no se suele especificar)\n",
"df_experiencia['fec_inicio'] = df_experiencia['fec_inicio'].dt.date\n",
"df_experiencia['fec_final'] = df_experiencia['fec_final'].dt.date\n",
"\n",
"# Añadimos una columna con la duración en meses\n",
"df_experiencia['duracion'] = df_experiencia.apply(\n",
" lambda row: (row['fec_final'].year - row['fec_inicio'].year) * 12 + \n",
" row['fec_final'].month - row['fec_inicio'].month, \n",
" axis=1\n",
")\n",
"\n",
"display(df_experiencia)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_experiencia.to_pickle('../pkl/df_experiencia.pkl') # Guardamos pickle para usarlo en el siguiente notebook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. NER con sequema para \"structured output\" y llamada a función"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explicar lo que necesitamos en el prompt y poner \"json_object\" en \"response_format\" parece más suficiente para obtener buenos resultados la mayoría de las veces. Sin embargo, nos podemos encontrar con problemas como, por ejemplo, que el modelo no siempre nos dé la misma palabra como clave de primer nivel (a veces puede poner \"experiencia\", otras veces \"experiencias\", \"roles\"...). Se podría intentar explicar esto con lenguaje natural en el prompt, pero es más sencillo definir un esquema y definirlo como función.\n",
"\n",
"Sin embargo, para asegurar que el modelo siempre responda con un formato consistente, podemos definir un esquema:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, nombres de la\n",
"empresa, y períodos de los mismos. Usa formato json en la salida con las claves \"empresa\", \"puesto\"\n",
"y \"periodo\". Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el\n",
"texto. Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". El contenido\n",
"para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM separados por un\n",
"guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.\n"
]
}
],
"source": [
"explicacion_fechas = (\n",
" 'Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el texto. '\n",
" 'Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". '\n",
" 'El contenido para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM '\n",
" 'separados por un guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.'\n",
" )\n",
"\n",
"ner_pre_prompt = (\n",
" 'Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, '\n",
" 'nombres de la empresa, y períodos de los mismos. Usa formato json en la salida '\n",
" f'con las claves \"empresa\", \"puesto\" y \"periodo\". {explicacion_fechas}'\n",
")\n",
"\n",
"# Guardamos el prompt para el reconocimiento de entidades nombradas en un archivo de texto\n",
"with open('../prompts/ner_pre_prompt.txt', 'w', encoding='utf-8') as file:\n",
" file.write(ner_pre_prompt)\n",
"\n",
"wrapped_ner_pre_prompt = textwrap.fill(ner_pre_prompt, width=100)\n",
"print(wrapped_ner_pre_prompt)\n",
"cv_sample_2_path = '../../ejemplos_cvs/cv_sample_2.txt'\n",
"with open(cv_sample_2_path, 'r') as file:\n",
" cv_text_2 = file.read()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datos estructurados:\n",
" {\n",
" \"records\": [\n",
" {\n",
" \"empresa\": \"Autónomo\",\n",
" \"puesto\": \"Comercial de automoviles\",\n",
" \"periodo\": \"202401-202402\"\n",
" },\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
" \"periodo\": \"202310-202403\"\n",
" },\n",
" {\n",
" \"empresa\": \"AGRISOLUTIONS\",\n",
" \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
" \"periodo\": \"202001-202401\"\n",
" },\n",
" {\n",
" \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
" \"puesto\": \"Camarero/a de barra\",\n",
" \"periodo\": \"202303-202309\"\n",
" },\n",
" {\n",
" \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
" \"puesto\": \"limpieza industrial\",\n",
" \"periodo\": \"202012-202305\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bellota Herramientas\",\n",
" \"puesto\": \"Personal de mantenimiento\",\n",
" \"periodo\": \"202005-202011\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"# Definimos el esquema en formato JSON\n",
"schema = {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"records\": {\n",
" \"type\": \"array\",\n",
" \"items\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"empresa\": {\"type\": \"string\"},\n",
" \"puesto\": {\"type\": \"string\"},\n",
" \"periodo\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"Formato 'YYYYMM-YYYYMM' o simplemente 'YYYYMM' si no aparece fecha de fin.\"\n",
" }\n",
" },\n",
" \"required\": [\"empresa\", \"puesto\", \"periodo\"]\n",
" }\n",
" }\n",
" },\n",
" \"required\": [\"records\"]\n",
"}\n",
"\n",
"# Llamamos a la API, incluyendo el esquema deseado en el parámetro 'functions'\n",
"response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
" {\"role\": \"user\", \"content\": cv_text}\n",
" ],\n",
" functions=[\n",
" {\n",
" \"name\": \"extraer_datos_cv\",\n",
" \"description\": \"Extrae tabla con títulos de puesto de trabajo, nombres de empresa y períodos de un CV.\",\n",
" \"parameters\": schema\n",
" }\n",
" ],\n",
" function_call=\"auto\"\n",
")\n",
"\n",
"# Extraemos de la respuesta sólo los datos de la función\n",
"if response.choices[0].message.function_call:\n",
" function_call = response.choices[0].message.function_call\n",
" structured_output = json.loads(function_call.arguments)\n",
" print(\"Datos estructurados:\\n\", json.dumps(structured_output, indent=4, ensure_ascii=False))\n",
"else:\n",
" print(\"No se han podido extraer datos estructurados.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. NER con esquema en fichero .JSON"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Para desarrollar el código ejecutable más adelante, vamos a utilizar un fichero .json externo con el esquema, lo que facilita el control de versiones y simplifica el código:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datos estructurados:\n",
" {\n",
" \"experiencia\": [\n",
" {\n",
" \"empresa\": \"Autónomo\",\n",
" \"puesto\": \"Comercial de automoviles\",\n",
" \"periodo\": \"202401-202402\"\n",
" },\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
" \"periodo\": \"202310-202403\"\n",
" },\n",
" {\n",
" \"empresa\": \"AGRISOLUTIONS\",\n",
" \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
" \"periodo\": \"202001-202401\"\n",
" },\n",
" {\n",
" \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
" \"puesto\": \"Camarero/a de barra\",\n",
" \"periodo\": \"202303-202309\"\n",
" },\n",
" {\n",
" \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
" \"puesto\": \"limpieza industrial\",\n",
" \"periodo\": \"202012-202305\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bellota Herramientas\",\n",
" \"puesto\": \"Personal de mantenimiento\",\n",
" \"periodo\": \"202005-202011\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"# Cargamos el esquema:\n",
"with open('../json/ner_schema.json', 'r', encoding='utf-8') as schema_file:\n",
" schema = json.load(schema_file)\n",
"\n",
"# Cargamos el CV:\n",
"cv_sample_path = '../../ejemplos_cvs/cv_sample.txt' # Ruta al fichero de texto con un currículo de ejemplo\n",
"with open(cv_sample_path, 'r') as file:\n",
" cv_text = file.read()\n",
"\n",
"def extraer_datos_cv(pre_prompt, schema, cv, temperature=0.5):\n",
" response = client.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" temperature=temperature,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": pre_prompt},\n",
" {\"role\": \"user\", \"content\": cv}\n",
" ],\n",
" functions=[\n",
" {\n",
" \"name\": \"extraer_datos_cv\",\n",
" \"description\": \"Extrae tabla con títulos de puesto de trabajo, nombres de empresa y períodos de un CV.\",\n",
" \"parameters\": schema\n",
" }\n",
" ],\n",
" function_call=\"auto\"\n",
" )\n",
"\n",
" if response.choices[0].message.function_call:\n",
" function_call = response.choices[0].message.function_call\n",
" structured_output = json.loads(function_call.arguments)\n",
" if structured_output.get(\"experiencia\"):\n",
" return structured_output\n",
" else:\n",
" return {\"error\": f\"No se han podido extraer datos estructurados: {response.choices[0].message.content}\"}\n",
" else:\n",
" return {\"error\": f\"No se han podido extraer datos estructurados: {response.choices[0].message.content}\"}\n",
" \n",
"datos_estructurados_cv = extraer_datos_cv(ner_pre_prompt, schema, cv_text)\n",
"print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv, indent=4, ensure_ascii=False))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pruebas adicionales"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En las siguientes pruebas, experimentamos con modificaciones del parámetro de temperatura en casos extremos de textos atípicos. El objetivo principal es asegurar que el agente extraiga toda la información válida posible pero, a la vez, evite \"alucinar\" cuando reciba datos confusos. Un parámetro muy alto de temperatura puede producir algunas alucinaciones en casos muy excepcionales, por lo que usaremos un parámetro muy \"conservador\". En cualquier caso, las pruebas son suficientes para estar muy \"cómodos\" con la efectividad del modelo gpt-4o-mini en esta tarea: tiene un rendimiento muy sólido."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Currículum \"minimalista\":"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datos estructurados:\n",
" {\n",
" \"experiencia\": [\n",
" {\n",
" \"empresa\": \"Mercadona\",\n",
" \"puesto\": \"Vendedor\",\n",
" \"periodo\": \"\"\n",
" },\n",
" {\n",
" \"empresa\": \"Bar de tapas\",\n",
" \"puesto\": \"Camarero\",\n",
" \"periodo\": \"\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"cv_text_mini = \"Soy un vendedor de puesto de mercado en Mercadona. Antes trabajé como camarero en un bar de tapas.\"\n",
"datos_estructurados_cv_mini = extraer_datos_cv(ner_pre_prompt, schema, cv_text_mini, temperature=0.1)\n",
"print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_mini, indent=4, ensure_ascii=False))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Texto inválido:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datos estructurados:\n",
" {\n",
" \"error\": \"No se han podido extraer datos estructurados: None\"\n",
"}\n"
]
}
],
"source": [
"cv_text_hal = (\n",
" \"El rápido zorro marrón salta sobre el perezoso perro. El perro ladra al zorro. \"\n",
" \"Los dos animales se miran fijamente. Es una escena común en el bosque. Me gusta el bosque.\"\n",
")\n",
"\n",
"datos_estructurados_cv_hal = extraer_datos_cv(ner_pre_prompt, schema, cv_text_hal, temperature=0.1)\n",
"print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_hal, indent=4, ensure_ascii=False))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datos estructurados:\n",
" {\n",
" \"error\": \"No se han podido extraer datos estructurados: None\"\n",
"}\n"
]
}
],
"source": [
"cv_text_hal = (\n",
" \"El rápido zorro marrón salta sobre el perezoso perro. El perro ladra al zorro. \"\n",
" \"Los dos animales se miran fijamente. Es una escena común en el bosque. Me gusta el bosque.\"\n",
")\n",
"\n",
"datos_estructurados_cv_hal = extraer_datos_cv(ner_pre_prompt, schema, cv_text_hal, temperature=2)\n",
"print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_hal, indent=4, ensure_ascii=False))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|