File size: 41,728 Bytes
a8994db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 0. Preparación del notebook e inicialización del cliente de OpenAI API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "API key: sk-proj-****************************************************************************************************************************************************-amA_5sA\n",
      "Cliente inicializado como <openai.OpenAI object at 0x0000011B3A4D3790>\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import textwrap\n",
    "from datetime import datetime\n",
    "from openai import OpenAI\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv(\"../../../../../../../apis/.env\")\n",
    "api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "unmasked_chars = 8\n",
    "masked_key = api_key[:unmasked_chars] + '*' * (len(api_key) - unmasked_chars*2) + api_key[-unmasked_chars:]\n",
    "print(f\"API key: {masked_key}\")\n",
    "client = OpenAI(api_key=api_key)\n",
    "print(\"Cliente inicializado como\",client)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Zero-shot named entity recognition"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Empezamos con un caso sencillo extrayendo un texto del CV de ejemplo y sin especificar esquema para el diccionario de datos json:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "  \"empresa\": \"Mercadona\",\n",
      "  \"puesto\": \"Vendedor/a de puesto de mercado\"\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "text = \"Vendedor/a de puesto de mercado - Mercadona\"\n",
    "# System prompt para reconocimiento de entidades nombradas (NER) de nombres de compañías y títulos de puestos de trabajo\n",
    "ner_pre_prompt = (\n",
    "  \"Eres un procesador de currículos vitae que extrae nombres de \"\n",
    "  \"compañías/empresas y títulos de puestos de trabajo. Usa formato json en la salida \"\n",
    "  'con las claves \"empresa\" y \"puesto\".'\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "      model=\"gpt-4o-mini\",\n",
    "      response_format={\"type\": \"json_object\"}, # De momento no facilitamos esquema. Lo probaremos más adelante.\n",
    "      messages=[\n",
    "        {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
    "        {\"role\": \"user\", \"content\": text}\n",
    "      ]\n",
    "    )\n",
    "generated_content = response.choices[0].message.content\n",
    "print(generated_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Ejemplo de reconocimiento de entidades nombradas en un currículo completo. Hemos utilizado un CV de ejemplo no incluido en el repositorio. Para ejecutar el siguiente bloque, es necesario facilitar una ruta válida a un currículo:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Candidato: Mohamed van der Poel Mendieta\n",
      "Último Puesto Comercial de automoviles\n",
      "Última formación reglada FP 1 / Técnico medio\n",
      "3\n",
      "Idioma EspañolInglésFr ...\n"
     ]
    }
   ],
   "source": [
    "cv_sample_path = '../../ejemplos_cvs/cv_sample.txt' # Ruta al fichero de texto con un currículo de ejemplo \n",
    "with open(cv_sample_path, 'r') as file:\n",
    "    cv_text = file.read()\n",
    "print(cv_text[:150],\"...\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Inferencia de entidades nombradas \"empresa\" y \"puesto\" con un modelo de OpenAI (elegimos gpt-4o-mini para reducir los costes y dado que esto sólo es una sencilla prueba de concepto)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "  \"experiencias\": [\n",
      "    {\n",
      "      \"empresa\": \"Autónomo\",\n",
      "      \"puesto\": \"Comercial de automoviles\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"Mercadona\",\n",
      "      \"puesto\": \"Vendedor/a de puesto de mercado\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"AGRISOLUTIONS\",\n",
      "      \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
      "      \"puesto\": \"Camarero/a de barra\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
      "      \"puesto\": \"Limpieza industrial\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"Bellota Herramientas\",\n",
      "      \"puesto\": \"Personal de mantenimiento\"\n",
      "    }\n",
      "  ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "response = client.chat.completions.create(\n",
    "      model=\"gpt-4o-mini\",\n",
    "      response_format={\"type\": \"json_object\"},\n",
    "      messages=[\n",
    "        {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
    "        {\"role\": \"user\", \"content\": cv_text}\n",
    "      ]\n",
    "    )\n",
    "generated_content = response.choices[0].message.content\n",
    "print(generated_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Procesamiento de fechas"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Vamos a intentar extraer también las fechas para cada puesto de trabajo. Para ello, añadiremos algunas indicaciones adicionales en relación a los posibles formatos de entrada y al formato de salida. En cuanto a las entradas, asumimos que cada CV puede tener formatos muy distintos para esta información. Para las salidas, queremos un formato que nos facilite posteriormente realizar cálculos con fechas como la duración total, antigüedad con respecto a fecha actual, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, nombres de la\n",
      "empresa, y períodos de los mismos. Usa formato json en la salida con las claves \"empresa\", \"puesto\"\n",
      "y \"periodo\". Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el\n",
      "texto. Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". Otros ejemplos\n",
      "de formatos de fecha son \"10/2023 - 03/2024\", \"Oct 2023 - Mar 2024\", etc. El contenido para la clave\n",
      "\"período\" debe ser un string con dos elementos en formato YYYYMM separados por un guion, por ejemplo\n",
      "\"202310-202403\", o uno en caso de no identificarse fecha de fin.\n"
     ]
    }
   ],
   "source": [
    "explicacion_fechas = (\n",
    "    'Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el texto. '\n",
    "    'Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". Otros ejemplos de '\n",
    "    'formatos de fecha son \"10/2023 - 03/2024\", \"Oct 2023 - Mar 2024\", etc. '\n",
    "    'El contenido para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM '\n",
    "    'separados por un guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.'\n",
    "    )\n",
    "\n",
    "ner_pre_prompt = (\n",
    "  'Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, '\n",
    "  'nombres de la empresa, y períodos de los mismos. Usa formato json en la salida '\n",
    "  f'con las claves \"empresa\", \"puesto\" y \"periodo\". {explicacion_fechas}'\n",
    ")\n",
    "wrapped_ner_pre_prompt = textwrap.fill(ner_pre_prompt, width=100)\n",
    "print(wrapped_ner_pre_prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "    \"experiencia\": [\n",
      "        {\n",
      "            \"empresa\": \"Autónomo\",\n",
      "            \"puesto\": \"Comercial de automoviles\",\n",
      "            \"periodo\": \"202401-202402\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Mercadona\",\n",
      "            \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
      "            \"periodo\": \"202310-202403\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"AGRISOLUTIONS\",\n",
      "            \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
      "            \"periodo\": \"202001-202401\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
      "            \"puesto\": \"Camarero/a de barra\",\n",
      "            \"periodo\": \"202303-202309\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
      "            \"puesto\": \"limpieza industrial\",\n",
      "            \"periodo\": \"202012-202305\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Bellota Herramientas\",\n",
      "            \"puesto\": \"Personal de mantenimiento\",\n",
      "            \"periodo\": \"202005-202011\"\n",
      "        }\n",
      "    ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "response = client.chat.completions.create(\n",
    "      model=\"gpt-4o-mini\",\n",
    "      response_format={\"type\": \"json_object\"},\n",
    "      messages=[\n",
    "        {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
    "        {\"role\": \"user\", \"content\": cv_text}\n",
    "      ]\n",
    "    )\n",
    "generated_content = response.choices[0].message.content\n",
    "print(generated_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Autónomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401-202402</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202403</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "0                 Autónomo              Comercial de automoviles   \n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "\n",
       "         periodo  \n",
       "0  202401-202402  \n",
       "1  202310-202403  \n",
       "2  202001-202401  \n",
       "3  202303-202309  \n",
       "4  202012-202305  \n",
       "5  202005-202011  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Convertimos el texto en un objeto JSON\n",
    "json_object = json.loads(generated_content)\n",
    "# Convertimos a Pandas dataframe para realizar operaciones\n",
    "# Aún no hemos especificado el esquema completo (a veces puede ser que el modelo nos dé \"experiencias\" en lugar de \"experiencia\")\n",
    "df = pd.DataFrame(json_object[\"experiencia\"]) \n",
    "display(df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Antes de desarrollar el código para la extracción y tratamiento de fechas, vamos a comprobar si el modelo es capaz de procesar correctamente un puesto sin fecha de fin en el período. Vamos a eliminar la fecha de fin en el puesto \"comercial de automóviles\" y guardarlo en '../../ejemplos_cvs/cv_sample_2.txt' (esta ruta no está incluida en el repositorio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "### Ejemplo original ###\n",
      "...\n",
      "Sexo Hombre\n",
      "Experiencia\n",
      "Enero 2024 / Febrero 2024\n",
      "Comercial de automoviles - Autónomo\n",
      "...\n",
      "\n",
      "### Ejemplo modificado ###\n",
      "...\n",
      "Sexo Hombre\n",
      "Experiencia\n",
      "Enero 2024\n",
      "Comercial de automoviles - Autónomo\n",
      "...\n"
     ]
    }
   ],
   "source": [
    "cv_sample_2_path = '../../ejemplos_cvs/cv_sample_2.txt'\n",
    "with open(cv_sample_2_path, 'r') as file:\n",
    "    cv_text_2 = file.read()\n",
    "print(f\"### Ejemplo original ###\\n...\\n{cv_text[301:386]}\\n...\")\n",
    "print(f\"\\n### Ejemplo modificado ###\\n...\\n{cv_text_2[301:371]}\\n...\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Volvemos a pedir la inferencia con el CV modificado:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "  \"experiencia\": [\n",
      "    {\n",
      "      \"empresa\": \"Autónomo\",\n",
      "      \"puesto\": \"Comercial de automoviles\",\n",
      "      \"periodo\": \"202401\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"Mercadona\",\n",
      "      \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
      "      \"periodo\": \"202310-202404\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"AGRISOLUTIONS\",\n",
      "      \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
      "      \"periodo\": \"202001-202401\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
      "      \"puesto\": \"Camarero/a de barra\",\n",
      "      \"periodo\": \"202303-202309\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
      "      \"puesto\": \"limpieza industrial\",\n",
      "      \"periodo\": \"202012-202305\"\n",
      "    },\n",
      "    {\n",
      "      \"empresa\": \"Bellota Herramientas\",\n",
      "      \"puesto\": \"Personal de mantenimiento\",\n",
      "      \"periodo\": \"202005-202011\"\n",
      "    }\n",
      "  ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "response = client.chat.completions.create(\n",
    "      model=\"gpt-4o-mini\",\n",
    "      response_format={\"type\": \"json_object\"},\n",
    "      messages=[\n",
    "        {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
    "        {\"role\": \"user\", \"content\": cv_text_2} # Sin fecha de fin en la última experiencia\n",
    "      ]\n",
    "    )\n",
    "generated_content = response.choices[0].message.content\n",
    "print(generated_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Vemos que el modelo gpt-4o-mini parece suficientemente solvente procesando e interpretando datos no estructurados como fechas. En un caso de uso real en el que dispongamos de muchos ficheros de entrada, podríamos entrenar un modelo de \"named entity recognition\" más sofisticado para asegurar mayor precisión. \n",
    "\n",
    "<br> A continuación, procedemos a tratar las fechas para definir un parámetro de duración del puesto de trabajo: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Autónomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "0                 Autónomo              Comercial de automoviles   \n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "\n",
       "         periodo  \n",
       "0         202401  \n",
       "1  202310-202404  \n",
       "2  202001-202401  \n",
       "3  202303-202309  \n",
       "4  202012-202305  \n",
       "5  202005-202011  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Convertimos el texto en un objeto JSON\n",
    "json_object = json.loads(generated_content)\n",
    "# Convertimos a Pandas dataframe para realizar operaciones\n",
    "df_experiencia = pd.DataFrame(json_object[\"experiencia\"])\n",
    "display(df_experiencia)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Autónomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-08</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "0                 Autónomo              Comercial de automoviles   \n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  \n",
       "0         202401  2024-01-01  2024-12-08        11  \n",
       "1  202310-202404  2023-10-01  2024-04-01         6  \n",
       "2  202001-202401  2020-01-01  2024-01-01        48  \n",
       "3  202303-202309  2023-03-01  2023-09-01         6  \n",
       "4  202012-202305  2020-12-01  2023-05-01        29  \n",
       "5  202005-202011  2020-05-01  2020-11-01         6  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Función para procesar el período\n",
    "def split_periodo(periodo):\n",
    "    dates = periodo.split('-')\n",
    "    start_date = datetime.strptime(dates[0], \"%Y%m\")\n",
    "    if len(dates) > 1:\n",
    "        end_date = datetime.strptime(dates[1], \"%Y%m\")\n",
    "    else:\n",
    "        end_date = datetime.now()\n",
    "    return start_date, end_date\n",
    "\n",
    "df_experiencia[['fec_inicio', 'fec_final']] = df_experiencia['periodo'].apply(lambda x: pd.Series(split_periodo(x)))\n",
    "\n",
    "# Formateamos las fechas para mostrar mes, año, y el primer día del mes (dado que el día es irrelevante y no se suele especificar)\n",
    "df_experiencia['fec_inicio'] = df_experiencia['fec_inicio'].dt.date\n",
    "df_experiencia['fec_final'] = df_experiencia['fec_final'].dt.date\n",
    "\n",
    "# Añadimos una columna con la duración en meses\n",
    "df_experiencia['duracion'] = df_experiencia.apply(\n",
    "    lambda row: (row['fec_final'].year - row['fec_inicio'].year) * 12 + \n",
    "                row['fec_final'].month - row['fec_inicio'].month, \n",
    "    axis=1\n",
    ")\n",
    "\n",
    "display(df_experiencia)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_experiencia.to_pickle('../pkl/df_experiencia.pkl') # Guardamos pickle para usarlo en el siguiente notebook"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. NER con sequema para \"structured output\" y llamada a función"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Explicar lo que necesitamos en el prompt y poner \"json_object\" en \"response_format\" parece más suficiente para obtener buenos resultados la mayoría de las veces. Sin embargo, nos podemos encontrar con problemas como, por ejemplo, que el modelo no siempre nos dé la misma palabra como clave de primer nivel (a veces puede poner \"experiencia\", otras veces \"experiencias\", \"roles\"...). Se podría intentar explicar esto con lenguaje natural en el prompt, pero es más sencillo definir un esquema y definirlo como función.\n",
    "\n",
    "Sin embargo, para asegurar que el modelo siempre responda con un formato consistente, podemos definir un esquema:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, nombres de la\n",
      "empresa, y períodos de los mismos. Usa formato json en la salida con las claves \"empresa\", \"puesto\"\n",
      "y \"periodo\". Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el\n",
      "texto. Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". El contenido\n",
      "para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM separados por un\n",
      "guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.\n"
     ]
    }
   ],
   "source": [
    "explicacion_fechas = (\n",
    "    'Para el período, contempla cualquier formato de fecha o rango de fechas incluido en el texto. '\n",
    "    'Un ejemplo de formato de fecha en la entrada es \"Octubre 2023 / Marzo 2024\". '\n",
    "    'El contenido para la clave \"período\" debe ser un string con dos elementos en formato YYYYMM '\n",
    "    'separados por un guion, por ejemplo \"202310-202403\", o uno en caso de no identificarse fecha de fin.'\n",
    "    )\n",
    "\n",
    "ner_pre_prompt = (\n",
    "  'Eres un procesador de currículos vitae que extrae títulos de puestos de trabajo, '\n",
    "  'nombres de la empresa, y períodos de los mismos. Usa formato json en la salida '\n",
    "  f'con las claves \"empresa\", \"puesto\" y \"periodo\". {explicacion_fechas}'\n",
    ")\n",
    "\n",
    "# Guardamos el prompt para el reconocimiento de entidades nombradas en un archivo de texto\n",
    "with open('../prompts/ner_pre_prompt.txt', 'w', encoding='utf-8') as file:\n",
    "    file.write(ner_pre_prompt)\n",
    "\n",
    "wrapped_ner_pre_prompt = textwrap.fill(ner_pre_prompt, width=100)\n",
    "print(wrapped_ner_pre_prompt)\n",
    "cv_sample_2_path = '../../ejemplos_cvs/cv_sample_2.txt'\n",
    "with open(cv_sample_2_path, 'r') as file:\n",
    "    cv_text_2 = file.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Datos estructurados:\n",
      " {\n",
      "    \"records\": [\n",
      "        {\n",
      "            \"empresa\": \"Autónomo\",\n",
      "            \"puesto\": \"Comercial de automoviles\",\n",
      "            \"periodo\": \"202401-202402\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Mercadona\",\n",
      "            \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
      "            \"periodo\": \"202310-202403\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"AGRISOLUTIONS\",\n",
      "            \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
      "            \"periodo\": \"202001-202401\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
      "            \"puesto\": \"Camarero/a de barra\",\n",
      "            \"periodo\": \"202303-202309\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
      "            \"puesto\": \"limpieza industrial\",\n",
      "            \"periodo\": \"202012-202305\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Bellota Herramientas\",\n",
      "            \"puesto\": \"Personal de mantenimiento\",\n",
      "            \"periodo\": \"202005-202011\"\n",
      "        }\n",
      "    ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "# Definimos el esquema en formato JSON\n",
    "schema = {\n",
    "    \"type\": \"object\",\n",
    "    \"properties\": {\n",
    "        \"records\": {\n",
    "            \"type\": \"array\",\n",
    "            \"items\": {\n",
    "                \"type\": \"object\",\n",
    "                \"properties\": {\n",
    "                    \"empresa\": {\"type\": \"string\"},\n",
    "                    \"puesto\": {\"type\": \"string\"},\n",
    "                    \"periodo\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"Formato 'YYYYMM-YYYYMM' o simplemente 'YYYYMM' si no aparece fecha de fin.\"\n",
    "                    }\n",
    "                },\n",
    "                \"required\": [\"empresa\", \"puesto\", \"periodo\"]\n",
    "            }\n",
    "        }\n",
    "    },\n",
    "    \"required\": [\"records\"]\n",
    "}\n",
    "\n",
    "# Llamamos a la API, incluyendo el esquema deseado en el parámetro 'functions'\n",
    "response = client.chat.completions.create(\n",
    "    model=\"gpt-4o-mini\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": ner_pre_prompt},\n",
    "        {\"role\": \"user\", \"content\": cv_text}\n",
    "    ],\n",
    "    functions=[\n",
    "        {\n",
    "            \"name\": \"extraer_datos_cv\",\n",
    "            \"description\": \"Extrae tabla con títulos de puesto de trabajo, nombres de empresa y períodos de un CV.\",\n",
    "            \"parameters\": schema\n",
    "        }\n",
    "    ],\n",
    "    function_call=\"auto\"\n",
    ")\n",
    "\n",
    "# Extraemos de la respuesta sólo los datos de la función\n",
    "if response.choices[0].message.function_call:\n",
    "    function_call = response.choices[0].message.function_call\n",
    "    structured_output = json.loads(function_call.arguments)\n",
    "    print(\"Datos estructurados:\\n\", json.dumps(structured_output, indent=4, ensure_ascii=False))\n",
    "else:\n",
    "    print(\"No se han podido extraer datos estructurados.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. NER con esquema en fichero .JSON"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Para desarrollar el código ejecutable más adelante, vamos a utilizar un fichero .json externo con el esquema, lo que facilita el control de versiones y simplifica el código:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Datos estructurados:\n",
      " {\n",
      "    \"experiencia\": [\n",
      "        {\n",
      "            \"empresa\": \"Autónomo\",\n",
      "            \"puesto\": \"Comercial de automoviles\",\n",
      "            \"periodo\": \"202401-202402\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Mercadona\",\n",
      "            \"puesto\": \"Vendedor/a de puesto de mercado\",\n",
      "            \"periodo\": \"202310-202403\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"AGRISOLUTIONS\",\n",
      "            \"puesto\": \"AUXILIAR DE MANTENIMIENTO INDUSTRIAL\",\n",
      "            \"periodo\": \"202001-202401\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"GASTROTEKA ORDIZIA 1990\",\n",
      "            \"puesto\": \"Camarero/a de barra\",\n",
      "            \"periodo\": \"202303-202309\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"ZEREGUIN ZERBITZUAK\",\n",
      "            \"puesto\": \"limpieza industrial\",\n",
      "            \"periodo\": \"202012-202305\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Bellota Herramientas\",\n",
      "            \"puesto\": \"Personal de mantenimiento\",\n",
      "            \"periodo\": \"202005-202011\"\n",
      "        }\n",
      "    ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "# Cargamos el esquema:\n",
    "with open('../json/ner_schema.json', 'r', encoding='utf-8') as schema_file:\n",
    "    schema = json.load(schema_file)\n",
    "\n",
    "# Cargamos el CV:\n",
    "cv_sample_path = '../../ejemplos_cvs/cv_sample.txt' # Ruta al fichero de texto con un currículo de ejemplo\n",
    "with open(cv_sample_path, 'r') as file:\n",
    "    cv_text = file.read()\n",
    "\n",
    "def extraer_datos_cv(pre_prompt, schema, cv, temperature=0.5):\n",
    "    response = client.chat.completions.create(\n",
    "        model=\"gpt-4o-mini\",\n",
    "        temperature=temperature,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": pre_prompt},\n",
    "            {\"role\": \"user\", \"content\": cv}\n",
    "        ],\n",
    "        functions=[\n",
    "            {\n",
    "                \"name\": \"extraer_datos_cv\",\n",
    "                \"description\": \"Extrae tabla con títulos de puesto de trabajo, nombres de empresa y períodos de un CV.\",\n",
    "                \"parameters\": schema\n",
    "            }\n",
    "        ],\n",
    "        function_call=\"auto\"\n",
    "    )\n",
    "\n",
    "    if response.choices[0].message.function_call:\n",
    "        function_call = response.choices[0].message.function_call\n",
    "        structured_output = json.loads(function_call.arguments)\n",
    "        if structured_output.get(\"experiencia\"):\n",
    "            return structured_output\n",
    "        else:\n",
    "            return {\"error\": f\"No se han podido extraer datos estructurados: {response.choices[0].message.content}\"}\n",
    "    else:\n",
    "        return {\"error\": f\"No se han podido extraer datos estructurados: {response.choices[0].message.content}\"}\n",
    "    \n",
    "datos_estructurados_cv = extraer_datos_cv(ner_pre_prompt, schema, cv_text)\n",
    "print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv, indent=4, ensure_ascii=False))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Pruebas adicionales"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "En las siguientes pruebas, experimentamos con modificaciones del parámetro de temperatura en casos extremos de textos atípicos. El objetivo principal es asegurar que el agente extraiga toda la información válida posible pero, a la vez, evite \"alucinar\" cuando reciba datos confusos. Un parámetro muy alto de temperatura puede producir algunas alucinaciones en casos muy excepcionales, por lo que usaremos un parámetro muy \"conservador\". En cualquier caso, las pruebas son suficientes para estar muy \"cómodos\" con la efectividad del modelo gpt-4o-mini en esta tarea: tiene un rendimiento muy sólido."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Currículum \"minimalista\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Datos estructurados:\n",
      " {\n",
      "    \"experiencia\": [\n",
      "        {\n",
      "            \"empresa\": \"Mercadona\",\n",
      "            \"puesto\": \"Vendedor\",\n",
      "            \"periodo\": \"\"\n",
      "        },\n",
      "        {\n",
      "            \"empresa\": \"Bar de tapas\",\n",
      "            \"puesto\": \"Camarero\",\n",
      "            \"periodo\": \"\"\n",
      "        }\n",
      "    ]\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "cv_text_mini = \"Soy un vendedor de puesto de mercado en Mercadona. Antes trabajé como camarero en un bar de tapas.\"\n",
    "datos_estructurados_cv_mini = extraer_datos_cv(ner_pre_prompt, schema, cv_text_mini, temperature=0.1)\n",
    "print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_mini, indent=4, ensure_ascii=False))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Texto inválido:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Datos estructurados:\n",
      " {\n",
      "    \"error\": \"No se han podido extraer datos estructurados: None\"\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "cv_text_hal = (\n",
    "    \"El rápido zorro marrón salta sobre el perezoso perro. El perro ladra al zorro. \"\n",
    "    \"Los dos animales se miran fijamente. Es una escena común en el bosque. Me gusta el bosque.\"\n",
    ")\n",
    "\n",
    "datos_estructurados_cv_hal = extraer_datos_cv(ner_pre_prompt, schema, cv_text_hal, temperature=0.1)\n",
    "print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_hal, indent=4, ensure_ascii=False))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Datos estructurados:\n",
      " {\n",
      "    \"error\": \"No se han podido extraer datos estructurados: None\"\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "cv_text_hal = (\n",
    "    \"El rápido zorro marrón salta sobre el perezoso perro. El perro ladra al zorro. \"\n",
    "    \"Los dos animales se miran fijamente. Es una escena común en el bosque. Me gusta el bosque.\"\n",
    ")\n",
    "\n",
    "datos_estructurados_cv_hal = extraer_datos_cv(ner_pre_prompt, schema, cv_text_hal, temperature=2)\n",
    "print(\"Datos estructurados:\\n\", json.dumps(datos_estructurados_cv_hal, indent=4, ensure_ascii=False))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}