File size: 56,684 Bytes
a8994db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "API key: sk-proj-****************************************************************************************************************************************************-amA_5sA\n",
      "Cliente inicializado como <openai.OpenAI object at 0x0000021664BC5ED0>\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "from scipy import spatial\n",
    "from openai import OpenAI\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv(\"../../../../../../../apis/.env\")\n",
    "api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "unmasked_chars = 8\n",
    "masked_key = api_key[:unmasked_chars] + '*' * (len(api_key) - unmasked_chars*2) + api_key[-unmasked_chars:]\n",
    "print(f\"API key: {masked_key}\")\n",
    "client = OpenAI(api_key=api_key)\n",
    "print(\"Cliente inicializado como\",client)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Ejemplos b谩sicos de c谩lculo de distancia con embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Aut贸nomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-07</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "0                 Aut贸nomo              Comercial de automoviles   \n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  \n",
       "0         202401  2024-01-01  2024-12-07        11  \n",
       "1  202310-202404  2023-10-01  2024-04-01         6  \n",
       "2  202001-202401  2020-01-01  2024-01-01        48  \n",
       "3  202303-202309  2023-03-01  2023-09-01         6  \n",
       "4  202012-202305  2020-12-01  2023-05-01        29  \n",
       "5  202005-202011  2020-05-01  2020-11-01         6  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Vendedor/a de puesto de mercado\n"
     ]
    }
   ],
   "source": [
    "ejemplos_experiencia = pd.read_pickle(\"../pkl/df_experiencia.pkl\")\n",
    "display(ejemplos_experiencia)\n",
    "print(ejemplos_experiencia.puesto[1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Texto: Vendedor/a de puesto de mercado\n",
      "Embeddings (1536): [-0.006109286565333605, -0.01615688018500805, 0.02458987757563591, 0.0013343609170988202, -0.04200134426355362, 0.015196849592030048, 0.010587611235678196, 0.03497566282749176, -0.015262306667864323, -0.031200997531414032]...\n"
     ]
    }
   ],
   "source": [
    "client = OpenAI()\n",
    "puesto_vendedor = ejemplos_experiencia.puesto[1]\n",
    "\n",
    "response = client.embeddings.create(\n",
    "    input=puesto_vendedor,\n",
    "    model=\"text-embedding-3-small\"\n",
    ")\n",
    "emb_puesto_vendedor = response.data[0].embedding\n",
    "print(f'Texto: {puesto_vendedor}\\nEmbeddings ({len(emb_puesto_vendedor)}): {emb_puesto_vendedor[:10]}...')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Texto: Camarero/a de barra\n",
      "Embeddings (1536): [-0.035160087049007416, -0.0017518880777060986, -0.006896876264363527, -0.040239546447992325, -0.024628372862935066, 0.000213889084989205, 4.456970600585919e-06, 0.047462623566389084, -0.02062072791159153, -0.03217765688896179]...\n"
     ]
    }
   ],
   "source": [
    "puesto_camarero = ejemplos_experiencia.puesto[3]\n",
    "\n",
    "response = client.embeddings.create(\n",
    "    input=puesto_camarero,\n",
    "    model=\"text-embedding-3-small\"\n",
    ")\n",
    "emb_puesto_camarero = response.data[0].embedding\n",
    "print(f'Texto: {puesto_camarero}\\nEmbeddings ({len(emb_puesto_camarero)}): {emb_puesto_camarero[:10]}...')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Texto: Cajero supermercado Dia\n",
      "Embeddings (1536): [-0.0045319367200136185, -0.04426201060414314, -0.0222327820956707, -0.015300587750971317, 0.008034787140786648, 0.011099428869783878, 0.03736374154686928, 0.07590357959270477, -0.020332932472229004, -0.03946714848279953]...\n"
     ]
    }
   ],
   "source": [
    "oferta_cajero = \"Cajero supermercado Dia\"\n",
    "\n",
    "response = client.embeddings.create(\n",
    "    input=oferta_cajero,\n",
    "    model=\"text-embedding-3-small\"\n",
    ")\n",
    "emb_oferta_cajero = response.data[0].embedding\n",
    "print(f'Texto: {oferta_cajero}\\nEmbeddings ({len(emb_oferta_cajero)}): {emb_oferta_cajero[:10]}...')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Distancia m铆nima: 0.000\n",
      "Distancia entre el puesto de vendedor y la oferta de cajero: 0.557\n",
      "Distancia entre el puesto de camarero y la oferta de cajero: 0.587\n"
     ]
    }
   ],
   "source": [
    "dist_min = spatial.distance.cosine(emb_oferta_cajero, emb_oferta_cajero)\n",
    "print(f\"Distancia m铆nima: {dist_min:.3f}\")\n",
    "dist_ven = spatial.distance.cosine(emb_puesto_vendedor, emb_oferta_cajero)\n",
    "print(f\"Distancia entre el puesto de vendedor y la oferta de cajero: {dist_ven:.3f}\")\n",
    "dist_cam = spatial.distance.cosine(emb_puesto_camarero, emb_oferta_cajero)\n",
    "print(f\"Distancia entre el puesto de camarero y la oferta de cajero: {dist_cam:.3f}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. An谩lisis de c谩lculo de distancias para el CV completo"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "      <th>embeddings</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Aut贸nomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-07</td>\n",
       "      <td>11</td>\n",
       "      <td>[0.015070287510752678, 0.0029741383623331785, ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "      <td>[-0.006109286565333605, -0.01615688018500805, ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "      <td>[0.00385109125636518, 0.04469580203294754, 0.0...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "      <td>[-0.035160087049007416, -0.0017518880777060986...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "      <td>[0.003700299421325326, 0.0045193759724497795, ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "      <td>[0.04391268640756607, 0.05462520197033882, 0.0...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "0                 Aut贸nomo              Comercial de automoviles   \n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  \\\n",
       "0         202401  2024-01-01  2024-12-07        11   \n",
       "1  202310-202404  2023-10-01  2024-04-01         6   \n",
       "2  202001-202401  2020-01-01  2024-01-01        48   \n",
       "3  202303-202309  2023-03-01  2023-09-01         6   \n",
       "4  202012-202305  2020-12-01  2023-05-01        29   \n",
       "5  202005-202011  2020-05-01  2020-11-01         6   \n",
       "\n",
       "                                          embeddings  \n",
       "0  [0.015070287510752678, 0.0029741383623331785, ...  \n",
       "1  [-0.006109286565333605, -0.01615688018500805, ...  \n",
       "2  [0.00385109125636518, 0.04469580203294754, 0.0...  \n",
       "3  [-0.035160087049007416, -0.0017518880777060986...  \n",
       "4  [0.003700299421325326, 0.0045193759724497795, ...  \n",
       "5  [0.04391268640756607, 0.05462520197033882, 0.0...  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ejemplos_experiencia['embeddings'] = ejemplos_experiencia['puesto'].apply(lambda puesto: client.embeddings.create(input=puesto, model=\"text-embedding-3-small\").data[0].embedding)\n",
    "display(ejemplos_experiencia)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculamos la distancia entre la oferta \"Cajero supermercado Dia\" y cada uno de los puestos. Podemos observar que el modelo de embeddings de OpenAI es razonablemente bueno encontrando las relaciones sem谩nticas entre textos como los del ejemplo. La experiencia que claramente tiene m谩s relaci贸n es la que obtiene una distancia m谩s baja. Para valorar la adecuaci贸n de los curr铆culos a una oferta dada podr铆amos, obviamente, usar m谩s datos tanto del CV como de la oferta, pero este ejemplo a peque帽a escala demuestra la utilidad de los embeddings para discriminar puestos de trabajo relacionados entre s铆:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia_oferta_cajero</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.556915</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.587302</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "      <td>0.617411</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Aut贸nomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-07</td>\n",
       "      <td>11</td>\n",
       "      <td>0.628034</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.647794</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "      <td>0.701754</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "0                 Aut贸nomo              Comercial de automoviles   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  distancia_oferta_cajero  \n",
       "1  202310-202404  2023-10-01  2024-04-01         6                 0.556915  \n",
       "3  202303-202309  2023-03-01  2023-09-01         6                 0.587302  \n",
       "2  202001-202401  2020-01-01  2024-01-01        48                 0.617411  \n",
       "0         202401  2024-01-01  2024-12-07        11                 0.628034  \n",
       "5  202005-202011  2020-05-01  2020-11-01         6                 0.647794  \n",
       "4  202012-202305  2020-12-01  2023-05-01        29                 0.701754  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "oferta_cajero = \"Cajero supermercado Dia\"\n",
    "response = client.embeddings.create(\n",
    "    input=oferta_cajero,\n",
    "    model=\"text-embedding-3-small\"\n",
    ")\n",
    "emb_oferta_cajero = response.data[0].embedding\n",
    "\n",
    "ejemplos_experiencia['distancia_oferta_cajero'] = ejemplos_experiencia['embeddings'].apply(lambda emb: spatial.distance.cosine(emb, emb_oferta_cajero))\n",
    "ejemplos_experiencia.drop(columns=['embeddings'], inplace=True)\n",
    "ejemplos_experiencia_sorted = ejemplos_experiencia.sort_values(by='distancia_oferta_cajero', ascending=True).copy()\n",
    "display(ejemplos_experiencia_sorted)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Guardamos el pickle para continuar usando este ejemplo en el siguiente bloque:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "ejemplos_experiencia_sorted.to_pickle(\"../pkl/df_ejemplos_con_distancia.pkl\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Algoritmo de c谩lculo de puntuaci贸n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Experimentando con m煤ltiples ficheros de datos, podr铆amos llegar a refinar una f贸rmula de c谩lculo de \"puntuaci贸n\" que se adapte a nuestro caso de uso, en funci贸n de las distancias simples calculadas con embeddings y los datos de cada experiencia (tiempo de permanencia en el puesto, antig眉edad de la experiencia, etc.). Con suficientes datos, podr铆amos incluso entrenar nuestra propia red neuronal con embeddings para determinar la predictibilidad de un cierto cambio de puesto. Por ejemplo, parece relativamente asequible, con suficientes datos de curr铆culos incluyendo fechas, conseguir \"predecir\" que un CV cuyas 煤ltimas dos experiencias sean \"Vendedor de Planta\" y \"Analista de Pricing\" sea m谩s apropiado para un puesto con t铆tulo \"Jefe de Compras\", que un CV con 煤ltima experiencia \"Jefe de Compras\" a un puesto con t铆tulo \"Vendedor de Planta\". Ese tipo de relaciones sem谩nticas y causales espec铆ficas a una industria o a un 谩mbito muy espec铆fico es muy dif铆cil de obtener con un modelo de lenguaje preentrenado, pero a d铆a de hoy tenemos las herramientas que nos facilitan \"refinar\" (finetuning) cualquiera de esos grandes modelos sin un coste muy elevado, utilizando los datos que se adapten a nuestro espec铆fico caso de uso. \n",
    "\n",
    "<br>Para esta prueba de concepto, no disponemos de una amplia base de datos de curr铆culos, por lo que definiremos un **sistema de puntuaci贸n simplificado basado exclusivamente en las distancias de embeddings, en la cantidad de experiencias previas y en la duraci贸n de las mismas**. No tendremos en cuenta factores muy importantes como la inferencia de causalidad y secuencialidad, as铆 como detalles de los curr铆culos y de la oferta de trabajo m谩s all谩 de los t铆tulos. \n",
    "\n",
    "<br>En cualquier caso, debe tenerse en cuenta que un sistema de an谩lisis algor铆tmico sobre datos de CVs ha de usarse con suma cautela, debido al alto riesgo de obtener \"falsos negativos\" (https://es.wikipedia.org/wiki/Falso_positivo_y_falso_negativo): descartar un candidato potencialmente bueno, sin llegar a ver m谩s datos que los de un fichero de texto. En este caso de uso, el riesgo de \"falso positivo\" (no descartar a un candidato no apropiado), no es tan cr铆tico, dado que la revisi贸n de datos de CVs es s贸lo una fase muy preliminar de un proceso de selecci贸n. En otras palabras, **el impacto en el negocio del \"falso positivo\" es hacer una entrevista de m谩s, mientras que el impacto de un \"falso negativo\" es perder un buen candidato.**\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.556915</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.587302</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "      <td>0.617411</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Aut贸nomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-07</td>\n",
       "      <td>11</td>\n",
       "      <td>0.628034</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.647790</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "      <td>0.701754</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "0                 Aut贸nomo              Comercial de automoviles   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  distancia  \n",
       "1  202310-202404  2023-10-01  2024-04-01         6   0.556915  \n",
       "3  202303-202309  2023-03-01  2023-09-01         6   0.587302  \n",
       "2  202001-202401  2020-01-01  2024-01-01        48   0.617411  \n",
       "0         202401  2024-01-01  2024-12-07        11   0.628034  \n",
       "5  202005-202011  2020-05-01  2020-11-01         6   0.647790  \n",
       "4  202012-202305  2020-12-01  2023-05-01        29   0.701754  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ejemplos_experiencia_sorted = pd.read_pickle(\"../pkl/df_ejemplos_con_distancia.pkl\")\n",
    "ejemplos_experiencia_sorted.rename(columns={'distancia_oferta_cajero':'distancia'}, inplace=True)\n",
    "display(ejemplos_experiencia_sorted)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Algoritmo de puntuaci贸n:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "def calcula_puntuacion(df, req_experience, positions_cap=4, min_dist_threshold=0.6, max_dist_threshold=0.7):\n",
    "    \"\"\"\n",
    "    Calcula la puntuaci贸n de un CV a partir de su tabla de distancias (con respecto a un puesto dado) y duraciones. \n",
    "\n",
    "    Params:\n",
    "    df (pandas.DataFrame): datos de un CV incluyendo diferentes experiencias incluyendo duracies y distancia previamente calculadas sobre los embeddings de un puesto de trabajo\n",
    "    req_experience (float): experiencia requerida en meses para el puesto de trabajo (valor de referencia para calcular una puntuaci贸n entre 0 y 100 en base a diferentes experiencias)\n",
    "    positions_cap (int, optional): Maximum number of positions to consider for scoring. Defaults to 4.\n",
    "    min_dist_threshold (float, optional): Distancia entre embeddings a partir de la cual el puesto del CV se considera \"equivalente\" al de la oferta.\n",
    "    max_dist_threshold (float, optional): Distancia entre embeddings a partir de la cual el puesto del CV no punt煤a.\n",
    "    \n",
    "    Returns:\n",
    "    pandas.DataFrame: DataFrame original a帽adiendo una columna con las puntuaciones individuales contribuidas por cada puesto.\n",
    "    float: Puntuaci贸n total entre 0 y 100.\n",
    "    \"\"\"\n",
    "    # A efectos de puntuaci贸n, computamos para cada puesto como m谩ximo el n煤mero total de meses de experiencia requeridos\n",
    "    df['duration_capped'] = df['duracion'].apply(lambda x: min(x, req_experience))\n",
    "    # Normalizamos la distancia entre 0 y 1, siendo 0 la distancia m铆nima y 1 la m谩xima\n",
    "    df['adjusted_distance'] = df['distancia'].apply(\n",
    "        lambda x: 0 if x <= min_dist_threshold else (\n",
    "            1 if x >= max_dist_threshold else (x - min_dist_threshold) / (max_dist_threshold - min_dist_threshold)\n",
    "        )\n",
    "    )\n",
    "    # Cada puesto punt煤a en base a su duraci贸n y a la inversa de la distancia (a menor distancia, mayor puntuaci贸n)\n",
    "    df['position_score'] = ((1 - df['adjusted_distance']) * (df['duration_capped']/req_experience) * 100)\n",
    "    # Descartamos puestos con distancia superior al umbral definido (asignamos puntuaci贸n 0), y ordenamos por puntuaci贸n\n",
    "    df.loc[df['distancia'] >= max_dist_threshold, 'position_score'] = 0\n",
    "    df = df.sort_values(by='position_score', ascending=False)\n",
    "    # Nos quedamos con los positions_cap puestos con mayor puntuaci贸n\n",
    "    df.iloc[positions_cap:, df.columns.get_loc('position_score')] = 0\n",
    "    # Totalizamos (no deber铆a superar 100 nunca, pero ponemos un l铆mite para asegurar)\n",
    "    total_score = min(df['position_score'].sum(), 100)\n",
    "    return df, total_score"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Para entender mejor el algoritmo, podemos probar el curr铆culo de ejemplo para el que hab铆amos calculado las distancias con el puesto \"Cajero supermercado Dia\". En su experiencia anterior, ve铆amos que el puesto m谩s cercano es el de \"Vendedor/a de puesto de mercado\", pero s贸lo tiene 6 meses de experiencia. Si prob谩ramos con una experiencia requerida muy alta, como 48 meses, este CV dar铆a una puntuaci贸n muy baja. Si, en cambio, el requisito de experiencia es m谩s bajo, el CV obtendr谩 una puntuaci贸n alta gracias a este puesto. Adem谩s, los puestos que tienen menor relaci贸n sem谩ntica con la oferta, pero m谩s meses de experiencia, puntuar谩n m谩s en funci贸n del ajuste de los par谩metros de umbral m铆nimo y m谩ximo de distancia. \n",
    "\n",
    "<br>El ajuste fino de los par谩metros de umbral m铆nimo y m谩ximo de distancia de embeddings hace que las experiencias con t铆tulo m谩s diferente al de la oferta tengan m谩s o menos peso en la puntuaci贸n. Estos no son par谩metros intuitivos y s贸lo se pueden ajustar en base a la experiencia: en la aplicaci贸n de usuario final, se etiquetar谩n como \"par谩metros avanzados\" y la recomendaci贸n ser铆a encontrar unos valores por defecto \"贸ptimos\" en funci贸n de la experiencia de m煤ltiples casos de uso. Para este ejemplo, hemos elegido 0.55 y 0.63, dado que sirven para ilustrar muy bien el siguiente ejemplo, si probamos diferentes valores para req_experience (el par谩metro positions_cap podemos dejarlo en 4 y no impacta mucho en la puntuaci贸n). Estos par谩metros se pueden ajustar en funci贸n del t铆tulo de la oferta, quedando fijos para comparar diferentes curr铆culos. **El rango 贸ptimo para los par谩metros min_dist_threshold y max_dist_threshold depende funcamentalmente de la longitud del texto de la oferta de trabajo a introducir**. En un entorno real, en el que se eval煤en diferentes ofertas, se podr铆an determinar unos valores \"recomendados\" de umbrales, pero para este sencillo ejercicio, l贸gicamente, no disponemos de datos suficientes para realizar ese ajuste fino. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Puntuaci贸n: 90.4/100\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>empresa</th>\n",
       "      <th>puesto</th>\n",
       "      <th>periodo</th>\n",
       "      <th>fec_inicio</th>\n",
       "      <th>fec_final</th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "      <th>duration_capped</th>\n",
       "      <th>adjusted_distance</th>\n",
       "      <th>position_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Mercadona</td>\n",
       "      <td>Vendedor/a de puesto de mercado</td>\n",
       "      <td>202310-202404</td>\n",
       "      <td>2023-10-01</td>\n",
       "      <td>2024-04-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.556915</td>\n",
       "      <td>6</td>\n",
       "      <td>0.086437</td>\n",
       "      <td>45.678127</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>GASTROTEKA ORDIZIA 1990</td>\n",
       "      <td>Camarero/a de barra</td>\n",
       "      <td>202303-202309</td>\n",
       "      <td>2023-03-01</td>\n",
       "      <td>2023-09-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.587302</td>\n",
       "      <td>6</td>\n",
       "      <td>0.466269</td>\n",
       "      <td>26.686531</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>AGRISOLUTIONS</td>\n",
       "      <td>AUXILIAR DE MANTENIMIENTO INDUSTRIAL</td>\n",
       "      <td>202001-202401</td>\n",
       "      <td>2020-01-01</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>48</td>\n",
       "      <td>0.617411</td>\n",
       "      <td>12</td>\n",
       "      <td>0.842632</td>\n",
       "      <td>15.736790</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Aut贸nomo</td>\n",
       "      <td>Comercial de automoviles</td>\n",
       "      <td>202401</td>\n",
       "      <td>2024-01-01</td>\n",
       "      <td>2024-12-07</td>\n",
       "      <td>11</td>\n",
       "      <td>0.628034</td>\n",
       "      <td>11</td>\n",
       "      <td>0.975419</td>\n",
       "      <td>2.253279</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Bellota Herramientas</td>\n",
       "      <td>Personal de mantenimiento</td>\n",
       "      <td>202005-202011</td>\n",
       "      <td>2020-05-01</td>\n",
       "      <td>2020-11-01</td>\n",
       "      <td>6</td>\n",
       "      <td>0.647790</td>\n",
       "      <td>6</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ZEREGUIN ZERBITZUAK</td>\n",
       "      <td>limpieza industrial</td>\n",
       "      <td>202012-202305</td>\n",
       "      <td>2020-12-01</td>\n",
       "      <td>2023-05-01</td>\n",
       "      <td>29</td>\n",
       "      <td>0.701754</td>\n",
       "      <td>12</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                   empresa                                puesto  \\\n",
       "1                Mercadona       Vendedor/a de puesto de mercado   \n",
       "3  GASTROTEKA ORDIZIA 1990                   Camarero/a de barra   \n",
       "2            AGRISOLUTIONS  AUXILIAR DE MANTENIMIENTO INDUSTRIAL   \n",
       "0                 Aut贸nomo              Comercial de automoviles   \n",
       "5     Bellota Herramientas             Personal de mantenimiento   \n",
       "4      ZEREGUIN ZERBITZUAK                   limpieza industrial   \n",
       "\n",
       "         periodo  fec_inicio   fec_final  duracion  distancia  \\\n",
       "1  202310-202404  2023-10-01  2024-04-01         6   0.556915   \n",
       "3  202303-202309  2023-03-01  2023-09-01         6   0.587302   \n",
       "2  202001-202401  2020-01-01  2024-01-01        48   0.617411   \n",
       "0         202401  2024-01-01  2024-12-07        11   0.628034   \n",
       "5  202005-202011  2020-05-01  2020-11-01         6   0.647790   \n",
       "4  202012-202305  2020-12-01  2023-05-01        29   0.701754   \n",
       "\n",
       "   duration_capped  adjusted_distance  position_score  \n",
       "1                6           0.086437       45.678127  \n",
       "3                6           0.466269       26.686531  \n",
       "2               12           0.842632       15.736790  \n",
       "0               11           0.975419        2.253279  \n",
       "5                6           1.000000        0.000000  \n",
       "4               12           1.000000        0.000000  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Ejemplo de uso con el curr铆culo del notebook anterior\n",
    "args = [12, 4, 0.55, 0.63] # Argumentos req_experience, positions_cap, min_distance, max_distance\n",
    "scored_df, total_score = calcula_puntuacion(ejemplos_experiencia_sorted, *args)\n",
    "print(f\"Puntuaci贸n: {total_score:.1f}/100\")\n",
    "display(scored_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Ejemplos de puntuaci贸n:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Para entender mejor el sistema de puntuaci贸n, podemos evaluar diferentes ejemplos en los que el requisito de experiencia sea 100 meses y establezcamos un l铆mite de 4 posiciones a considerar. Los l铆mites de distancia de embeddings no son relevantes en este caso, aunque los elegimos en funci贸n de los experimentos realizados anteriormente. Utilizamos los umbrales 0.6 y 0.7 para ilustrar un posible rango razonable de distancias de embeddings para una descripci贸n corta como la utilizada. **El rango 贸ptimo para estos par谩metros depende funcamentalmente de la longitud del texto de la oferta de trabajo a introducir**."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "args = [100, 4, 0.6, 0.7] # req_experience, positions_cap, min_distance, max_distance"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4 experiencias en puesto muy similar al ofertado, sumando 99 meses:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total Score: 99.00\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "      <th>duration_capped</th>\n",
       "      <th>adjusted_distance</th>\n",
       "      <th>position_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>25</td>\n",
       "      <td>0.6</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>25.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>25</td>\n",
       "      <td>0.6</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>25.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>25</td>\n",
       "      <td>0.6</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>25.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>24</td>\n",
       "      <td>0.6</td>\n",
       "      <td>24</td>\n",
       "      <td>0</td>\n",
       "      <td>24.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>23</td>\n",
       "      <td>0.6</td>\n",
       "      <td>23</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   duracion  distancia  duration_capped  adjusted_distance  position_score\n",
       "0        25        0.6               25                  0            25.0\n",
       "1        25        0.6               25                  0            25.0\n",
       "2        25        0.6               25                  0            25.0\n",
       "3        24        0.6               24                  0            24.0\n",
       "4        23        0.6               23                  0             0.0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "data = [\n",
    "    {'duracion': 25, 'distancia': 0.6},\n",
    "    {'duracion': 25, 'distancia': 0.6},\n",
    "    {'duracion': 25, 'distancia': 0.6},\n",
    "    {'duracion': 24, 'distancia': 0.6},\n",
    "    {'duracion': 23, 'distancia': 0.6} # Esta 煤ltima posici贸n no cuenta, al poner un l铆mite de 4 y ser la de menor puntuaci贸n\n",
    "]\n",
    "\n",
    "df_very_high_score = pd.DataFrame(data)\n",
    "scored_df, total_score = calcula_puntuacion(df_very_high_score, *args)\n",
    "print(f\"Total Score: {total_score:.2f}\")\n",
    "display(scored_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4 experiencias en puestos menos similares al ofertado, sumando 100 meses:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total Score: 90.00\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "      <th>duration_capped</th>\n",
       "      <th>adjusted_distance</th>\n",
       "      <th>position_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>25</td>\n",
       "      <td>0.61</td>\n",
       "      <td>25</td>\n",
       "      <td>0.1</td>\n",
       "      <td>22.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>25</td>\n",
       "      <td>0.61</td>\n",
       "      <td>25</td>\n",
       "      <td>0.1</td>\n",
       "      <td>22.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>25</td>\n",
       "      <td>0.61</td>\n",
       "      <td>25</td>\n",
       "      <td>0.1</td>\n",
       "      <td>22.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>25</td>\n",
       "      <td>0.61</td>\n",
       "      <td>25</td>\n",
       "      <td>0.1</td>\n",
       "      <td>22.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>25</td>\n",
       "      <td>0.62</td>\n",
       "      <td>25</td>\n",
       "      <td>0.2</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   duracion  distancia  duration_capped  adjusted_distance  position_score\n",
       "0        25       0.61               25                0.1            22.5\n",
       "1        25       0.61               25                0.1            22.5\n",
       "2        25       0.61               25                0.1            22.5\n",
       "3        25       0.61               25                0.1            22.5\n",
       "4        25       0.62               25                0.2             0.0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "data = [\n",
    "    {'duracion': 25, 'distancia': 0.61},\n",
    "    {'duracion': 25, 'distancia': 0.61},\n",
    "    {'duracion': 25, 'distancia': 0.61},\n",
    "    {'duracion': 25, 'distancia': 0.61},\n",
    "    {'duracion': 25, 'distancia': 0.62} # Esta 煤ltima posici贸n no cuenta, al poner un l铆mite de 4 y ser la de menor puntuaci贸n\n",
    "]\n",
    "\n",
    "df_high_score = pd.DataFrame(data)\n",
    "scored_df, total_score = calcula_puntuacion(df_high_score, *args)\n",
    "print(f\"Total Score: {total_score:.2f}\")\n",
    "display(scored_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Una experiencia de 100 meses en un puesto de \"distancia intermedia\" al ofertado:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total Score: 50.00\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "      <th>duration_capped</th>\n",
       "      <th>adjusted_distance</th>\n",
       "      <th>position_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>100</td>\n",
       "      <td>0.65</td>\n",
       "      <td>100</td>\n",
       "      <td>0.5</td>\n",
       "      <td>50.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>23</td>\n",
       "      <td>0.70</td>\n",
       "      <td>23</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   duracion  distancia  duration_capped  adjusted_distance  position_score\n",
       "0       100       0.65              100                0.5            50.0\n",
       "1        25       0.70               25                1.0             0.0\n",
       "2        25       0.70               25                1.0             0.0\n",
       "3        25       0.70               25                1.0             0.0\n",
       "4        23       0.70               23                1.0             0.0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "data = [\n",
    "    {'duracion': 100, 'distancia': 0.65},\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "    {'duracion': 23, 'distancia': 0.7} # Descartado por distancia\n",
    "]\n",
    "\n",
    "df_mid_score = pd.DataFrame(data)\n",
    "scored_df, total_score = calcula_puntuacion(df_mid_score, *args)\n",
    "print(f\"Total Score: {total_score:.2f}\")\n",
    "display(scored_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "50 meses en un puesto muy similar y 50 meses en un puesto de \"distancia intermedia\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total Score: 75.00\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>duracion</th>\n",
       "      <th>distancia</th>\n",
       "      <th>duration_capped</th>\n",
       "      <th>adjusted_distance</th>\n",
       "      <th>position_score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>50</td>\n",
       "      <td>0.60</td>\n",
       "      <td>50</td>\n",
       "      <td>0.0</td>\n",
       "      <td>50.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>50</td>\n",
       "      <td>0.65</td>\n",
       "      <td>50</td>\n",
       "      <td>0.5</td>\n",
       "      <td>25.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>25</td>\n",
       "      <td>0.70</td>\n",
       "      <td>25</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   duracion  distancia  duration_capped  adjusted_distance  position_score\n",
       "0        50       0.60               50                0.0            50.0\n",
       "1        50       0.65               50                0.5            25.0\n",
       "2        25       0.70               25                1.0             0.0\n",
       "3        25       0.70               25                1.0             0.0\n",
       "4        25       0.70               25                1.0             0.0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "data = [\n",
    "    {'duracion': 50, 'distancia': 0.6},\n",
    "    {'duracion': 50, 'distancia': 0.65},\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "    {'duracion': 25, 'distancia': 0.7}, # Descartado por distancia\n",
    "]\n",
    "\n",
    "df_mid_high_score = pd.DataFrame(data)\n",
    "scored_df, total_score = calcula_puntuacion(df_mid_high_score, *args)\n",
    "print(f\"Total Score: {total_score:.2f}\")\n",
    "display(scored_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Llamada al modelo para generar el fichero JSON final de salida"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "El 煤ltimo paso, una vez extra铆dos los datos y calculadas las puntuaciones, ser谩 llamar al modelo para que genere un fichero JSON de salida con la siguiente informaci贸n:\n",
    "\n",
    "- Puntuaci贸n total.\n",
    "- Listado de experiencias relevantes.\n",
    "- Descripci贸n de la experiencia.\n",
    "\n",
    "Los dos primeros elementos se calculan mediante la inferencia de reconocimiento de entidades nombradas del notebook 01, y los c谩lculos con embeddings de este notebook. Para obetener la salida estructurada completa, haremos una nueva llamada a un modelo gpt en la que le pasaremos la puntuaci贸n y la tabla de datos completa, para que elabore un texto explicativo y coherente con los datos calculados. En el siguiente notebook, ejecutaremos el proceso completo para el CV de ejemplo con el que hemos estado trabajando."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}