Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
start_time = time.time()
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Tuple
|
5 |
+
import pandas as pd
|
6 |
+
import gradio as gr
|
7 |
+
import json
|
8 |
+
|
9 |
+
import duckdb
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
USE_DOTENV = False
|
14 |
+
|
15 |
+
ROOT = Path(__file__).parent
|
16 |
+
|
17 |
+
JSON_PATH = ROOT / "json"
|
18 |
+
# DATASET_PATH = ROOT / "pkl" / "app_dataset.pkl"
|
19 |
+
DOTENV_PATH = ROOT.parent.parent / "apis" / ".env"
|
20 |
+
# DUCKDB_PATH = ROOT / "db" / "sss_vectordb.duckdb"
|
21 |
+
|
22 |
+
from src import front_dataset_handler as fdh, app_utils as utils, semantic_search as ss, env_options
|
23 |
+
tokens = env_options.check_env(use_dotenv=USE_DOTENV, dotenv_path=DOTENV_PATH, env_tokens = ["HF_TOKEN"])
|
24 |
+
print(f"Libraries loaded. {time.time() - start_time:.2f} seconds.")
|
25 |
+
# Carga de modelo de embeddings y conexión a DuckDB
|
26 |
+
emb_model = SentenceTransformer("FinLang/finance-embeddings-investopedia", token = tokens.get("HF_TOKEN"))
|
27 |
+
# con = duckdb.connect(DUCKDB_PATH)
|
28 |
+
print(f"Model loaded. {time.time() - start_time:.2f} seconds.")
|
29 |
+
#### CONEXIÓN DUCKDB A HUGGING FACE HUB ####
|
30 |
+
print("Initializing DuckDB connection...")
|
31 |
+
con = duckdb.connect()
|
32 |
+
hf_token = tokens.get("HF_TOKEN")
|
33 |
+
##################################
|
34 |
+
masked_hf_token = hf_token[:4] + "*" * (len(hf_token) - 8) + hf_token[-4:]
|
35 |
+
print(f"Using Hugging Face token: {masked_hf_token}")
|
36 |
+
##################################
|
37 |
+
|
38 |
+
hf_token = tokens.get("HF_TOKEN")
|
39 |
+
masked_hf_token = hf_token[:4] + "*" * (len(hf_token) - 8) + hf_token[-4:]
|
40 |
+
'''
|
41 |
+
create_secret_query = f"""
|
42 |
+
INSTALL httpfs;
|
43 |
+
LOAD httpfs;
|
44 |
+
CREATE PERSISTENT SECRET hf_token (
|
45 |
+
TYPE huggingface,
|
46 |
+
TOKEN '{hf_token}'
|
47 |
+
);
|
48 |
+
"""
|
49 |
+
'''
|
50 |
+
# con.sql(create_secret_query)
|
51 |
+
# print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
52 |
+
dataset_name = "reddgr/swift-stock-screener"
|
53 |
+
# con.sql(query="INSTALL vss; LOAD vss;")
|
54 |
+
|
55 |
+
create_secret_query = f"""
|
56 |
+
INSTALL httpfs;
|
57 |
+
LOAD httpfs;
|
58 |
+
CREATE PERSISTENT SECRET hf_token (
|
59 |
+
TYPE huggingface,
|
60 |
+
TOKEN '{hf_token}'
|
61 |
+
);
|
62 |
+
"""
|
63 |
+
con.sql(create_secret_query)
|
64 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf().iloc[0,-2])
|
65 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf().iloc[0,-1])
|
66 |
+
print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
67 |
+
|
68 |
+
create_table_query = f"""
|
69 |
+
INSTALL vss;
|
70 |
+
LOAD vss;
|
71 |
+
SET hnsw_enable_experimental_persistence = true;
|
72 |
+
CREATE TABLE vector_table AS
|
73 |
+
SELECT *, embeddings::float[{emb_model.get_sentence_embedding_dimension()}] as embeddings_float
|
74 |
+
FROM 'hf://datasets/{dataset_name}/data/train-00000-of-00001.parquet';
|
75 |
+
"""
|
76 |
+
|
77 |
+
con.sql(create_table_query)
|
78 |
+
|
79 |
+
print("Indexing data for vector search...")
|
80 |
+
create_index_query = f"""
|
81 |
+
CREATE INDEX sss_hnsw_index ON vector_table USING HNSW (embeddings_float) WITH (metric = 'cosine');
|
82 |
+
"""
|
83 |
+
con.sql(create_index_query)
|
84 |
+
|
85 |
+
# print(con.sql("SELECT * FROM duckdb_secrets()").fetchdf())
|
86 |
+
print(f"Created search index. {time.time() - start_time:.2f} seconds.")
|
87 |
+
########################################
|
88 |
+
|
89 |
+
# ESTADO GLOBAL
|
90 |
+
last_result_df: pd.DataFrame = pd.DataFrame()
|
91 |
+
|
92 |
+
######################
|
93 |
+
last_search_type: str = ""
|
94 |
+
last_search_query: str = ""
|
95 |
+
# last_filtros_values: Tuple = ()
|
96 |
+
last_column_filters: list[tuple[str, str]] = []
|
97 |
+
last_sort_col_label: str = ""
|
98 |
+
last_sort_dir: str = ""
|
99 |
+
#######################
|
100 |
+
|
101 |
+
# ---------------------------------------------------------------------------
|
102 |
+
# CONFIG --------------------------------------------------------------------
|
103 |
+
# ---------------------------------------------------------------------------
|
104 |
+
app_dataset = load_dataset("reddgr/swift-stock-screener", split="train", token = tokens.get("HF_TOKEN")).to_pandas()
|
105 |
+
|
106 |
+
# dh_app = fdh.FrontDatasetHandler(app_dataset=pd.read_pickle(DATASET_PATH))
|
107 |
+
dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
|
108 |
+
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
|
109 |
+
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()
|
110 |
+
|
111 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
112 |
+
variables_busq_norm = json.load(f)["variables_busq_norm"]
|
113 |
+
|
114 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
115 |
+
caracteristicas = json.load(f)["cols_tabla_equity"]
|
116 |
+
|
117 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
118 |
+
caracteristicas_etf = json.load(f)["cols_tabla_etfs"]
|
119 |
+
|
120 |
+
with open(JSON_PATH / "cat_cols.json", "r") as f:
|
121 |
+
cat_cols = json.load(f)["cat_cols"]
|
122 |
+
|
123 |
+
with open(JSON_PATH / "col_names_map.json", "r") as f:
|
124 |
+
rename_columns = json.load(f)["col_names_map"]
|
125 |
+
|
126 |
+
with open(JSON_PATH / "gamma_params.json", "r") as f:
|
127 |
+
gamma_params = json.load(f)
|
128 |
+
|
129 |
+
with open(JSON_PATH / "semantic_search_params.json", "r") as f:
|
130 |
+
semantic_search_params = json.load(f)["semantic_search_params"]
|
131 |
+
|
132 |
+
# Columnas a estilizar en rojo si son negativas
|
133 |
+
neg_display_cols = [rename_columns.get(c, c)
|
134 |
+
for c in ("ret_365", "revenueGrowth")]
|
135 |
+
|
136 |
+
# Parámetros de la función de distribución de distancias:
|
137 |
+
shape, loc, scale = gamma_params["shape"], gamma_params["loc"], gamma_params["scale"]
|
138 |
+
max_dist, precision_cdf = gamma_params["max_dist"], gamma_params["precision_cdf"]
|
139 |
+
y_cdf, _ = dh_app.configura_distr_prob(shape, loc, scale, max_dist, precision_cdf)
|
140 |
+
|
141 |
+
# Parámetros de la de búsqueda VSS:
|
142 |
+
k = semantic_search_params["k"]
|
143 |
+
brevity_penalty = semantic_search_params["brevity_penalty"]
|
144 |
+
reward_for_literal = semantic_search_params["reward_for_literal"]
|
145 |
+
partial_match_factor = semantic_search_params["partial_match_factor"]
|
146 |
+
print(f"VSS params: k={k}, brevity_penalty={brevity_penalty}, reward_for_literal={reward_for_literal}, partial_match_factor={partial_match_factor}")
|
147 |
+
|
148 |
+
filtros_keys = caracteristicas[2:]
|
149 |
+
|
150 |
+
MAX_ROWS = 13000
|
151 |
+
ROWS_PER_PAGE = 100
|
152 |
+
|
153 |
+
# ---------------------------------------------------------------------------
|
154 |
+
# FUNCIONES UI --------------------------------------------------------------
|
155 |
+
# ---------------------------------------------------------------------------
|
156 |
+
|
157 |
+
# Dejamos en este módulo (en lugar de app_utils) funciones específicas de gestión de la interfaz
|
158 |
+
|
159 |
+
def _paginate(df: pd.DataFrame, page: int, per_page: int = ROWS_PER_PAGE) -> Tuple[pd.DataFrame, str]:
|
160 |
+
total_pages = max(1, (len(df) + per_page - 1) // per_page)
|
161 |
+
page = max(1, min(page, total_pages))
|
162 |
+
slice_df = df.iloc[(page-1)*per_page : (page-1)*per_page + per_page]
|
163 |
+
slice_df = utils.styler_negative_red(slice_df, cols=neg_display_cols)
|
164 |
+
return slice_df, f"Page {page} of {total_pages}"
|
165 |
+
|
166 |
+
|
167 |
+
def search_dynamic(ticker: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
|
168 |
+
global last_result_df
|
169 |
+
|
170 |
+
ticker = ticker.upper().strip()
|
171 |
+
if ticker == "":
|
172 |
+
last_result_df = pd.DataFrame()
|
173 |
+
return pd.DataFrame(), "Page 1 of 1"
|
174 |
+
|
175 |
+
filtros = dict(zip(filtros_keys, filtros_values))
|
176 |
+
|
177 |
+
neighbors_df = dh_app.vecinos_cercanos(
|
178 |
+
df=maestro,
|
179 |
+
variables_busq=variables_busq_norm,
|
180 |
+
caracteristicas=caracteristicas,
|
181 |
+
target_ticker=ticker,
|
182 |
+
y_cdf=y_cdf,
|
183 |
+
precision_cdf=precision_cdf,
|
184 |
+
max_dist=max_dist,
|
185 |
+
n_neighbors=len(maestro),
|
186 |
+
filtros=filtros,
|
187 |
+
)
|
188 |
+
|
189 |
+
if isinstance(neighbors_df, str):
|
190 |
+
last_result_df = pd.DataFrame()
|
191 |
+
return pd.DataFrame(), "Page 1 de 1"
|
192 |
+
|
193 |
+
neighbors_df.reset_index(inplace=True)
|
194 |
+
neighbors_df.drop(columns=["distance"], inplace=True)
|
195 |
+
# neighbors_df = format_results(neighbors_df)
|
196 |
+
neighbors_df = utils.format_results(neighbors_df, rename_columns)
|
197 |
+
|
198 |
+
last_result_df = neighbors_df.head(MAX_ROWS).copy()
|
199 |
+
return _paginate(last_result_df, page)
|
200 |
+
|
201 |
+
|
202 |
+
def search_theme(theme: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
|
203 |
+
global last_result_df
|
204 |
+
query = theme.strip()
|
205 |
+
if query == "":
|
206 |
+
last_result_df = pd.DataFrame()
|
207 |
+
return pd.DataFrame(), "Page 1 of 1"
|
208 |
+
|
209 |
+
# Llamada al algoritmo de búsqueda, que devuelve un dataframe con k activos:
|
210 |
+
result_df = ss.duckdb_vss_local(
|
211 |
+
model=emb_model,
|
212 |
+
duckdb_connection=con,
|
213 |
+
query=query,
|
214 |
+
k=k,
|
215 |
+
brevity_penalty=brevity_penalty,
|
216 |
+
reward_for_literal=reward_for_literal,
|
217 |
+
partial_match_factor=partial_match_factor,
|
218 |
+
table_name="vector_table",
|
219 |
+
embedding_column="embeddings"
|
220 |
+
)
|
221 |
+
theme_dist = result_df[['ticker', 'distance']].rename(columns={'distance': 'Search dist.'})
|
222 |
+
# Cruzamos el dataframe de distancias con el maestro y mantenemos las columnas originales:
|
223 |
+
clean_feats = [c for c in caracteristicas if c != 'ticker']
|
224 |
+
# indexamos por ticker para cruzar las tablas:
|
225 |
+
maestro_subset = maestro.set_index('ticker')[clean_feats]
|
226 |
+
merged = theme_dist.set_index('ticker').join(maestro_subset, how='inner').reset_index()
|
227 |
+
# Reordenamos las columnas y añadimos la distancia:
|
228 |
+
ordered_cols = ['ticker'] + clean_feats + ['Search dist.']
|
229 |
+
merged = merged[ordered_cols]
|
230 |
+
# Ajustamos los formatos de las columnas:
|
231 |
+
formatted = utils.format_results(merged, rename_columns)
|
232 |
+
last_result_df = formatted.head(MAX_ROWS).copy()
|
233 |
+
return _paginate(last_result_df, page)
|
234 |
+
|
235 |
+
|
236 |
+
def _compose_summary() -> str:
|
237 |
+
parts = []
|
238 |
+
if last_search_type == "theme":
|
239 |
+
parts.append(f"Theme search for '{last_search_query}'")
|
240 |
+
elif last_search_type == "ticker":
|
241 |
+
parts.append(f"Ticker search for '{last_search_query}'")
|
242 |
+
if last_column_filters:
|
243 |
+
fstr = ", ".join(f"{col} = '{val}'" for col, val in last_column_filters)
|
244 |
+
parts.append(f"Filters: {fstr}")
|
245 |
+
if last_sort_col_label:
|
246 |
+
parts.append(f"Sorted by: {last_sort_col_label} ({last_sort_dir})")
|
247 |
+
return ". ".join(parts)
|
248 |
+
|
249 |
+
def search_all(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
|
250 |
+
global last_search_type, last_search_query, last_column_filters
|
251 |
+
last_column_filters.clear()
|
252 |
+
|
253 |
+
if theme.strip():
|
254 |
+
last_search_type, last_search_query = "theme", theme.strip()
|
255 |
+
df, label = search_theme(theme, page)
|
256 |
+
# new_ticker, new_theme = "", theme.strip()
|
257 |
+
new_ticker, new_theme = "", "" # limpia las cajas de búsqueda
|
258 |
+
|
259 |
+
elif ticker.strip():
|
260 |
+
last_search_type, last_search_query = "ticker", ticker.strip().upper()
|
261 |
+
df, label = search_dynamic(ticker, page)
|
262 |
+
# new_ticker, new_theme = last_search_query, ""
|
263 |
+
new_ticker, new_theme = "", ""
|
264 |
+
|
265 |
+
else:
|
266 |
+
df, label = _paginate(last_result_df, page)
|
267 |
+
new_ticker, new_theme = "", ""
|
268 |
+
|
269 |
+
summary = _compose_summary()
|
270 |
+
return df, label, new_ticker, new_theme, summary
|
271 |
+
|
272 |
+
def page_change(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
|
273 |
+
return search_all(theme, ticker, page)
|
274 |
+
|
275 |
+
|
276 |
+
# ---------------------------------------------------------------------------
|
277 |
+
# SORTING -------------------------------------------------------------------
|
278 |
+
# ---------------------------------------------------------------------------
|
279 |
+
|
280 |
+
def apply_sort(col_label: str, direction: str) -> tuple[pd.DataFrame, str, int, str]:
|
281 |
+
global last_sort_col_label, last_sort_dir, last_search_type, last_search_query, last_column_filters, last_result_df
|
282 |
+
|
283 |
+
# record selection and clear previous state
|
284 |
+
last_sort_col_label, last_sort_dir = col_label or "", direction or ""
|
285 |
+
last_search_type = last_search_query = ""
|
286 |
+
last_column_filters.clear()
|
287 |
+
|
288 |
+
# reload raw data
|
289 |
+
df_raw = maestro[caracteristicas].head(MAX_ROWS).copy()
|
290 |
+
|
291 |
+
# sort on original data column if specified
|
292 |
+
if col_label:
|
293 |
+
# reverse lookup original column key
|
294 |
+
inv_map = {v: k for k, v in rename_columns.items()}
|
295 |
+
orig_col = inv_map.get(col_label, col_label)
|
296 |
+
asc = (direction == "Ascending")
|
297 |
+
df_raw = df_raw.sort_values(
|
298 |
+
by=orig_col,
|
299 |
+
ascending=asc,
|
300 |
+
na_position='last'
|
301 |
+
).reset_index(drop=True)
|
302 |
+
|
303 |
+
# apply existing formatting helpers
|
304 |
+
df_formatted = utils.format_results(df_raw, rename_columns)
|
305 |
+
|
306 |
+
# update global and paginate
|
307 |
+
last_result_df = df_formatted.copy()
|
308 |
+
slice_df, label = _paginate(last_result_df, 1)
|
309 |
+
summary = f"Sorted by: {col_label} ({direction})" if col_label else ""
|
310 |
+
return slice_df, label, 1, summary
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
def reset_initial() -> tuple[pd.DataFrame,str,int,str,str,str]:
|
315 |
+
global last_search_type, last_search_query, last_column_filters, last_sort_col_label, last_sort_dir, last_result_df
|
316 |
+
last_search_type = last_search_query = ""
|
317 |
+
last_column_filters.clear()
|
318 |
+
last_sort_col_label = last_sort_dir = ""
|
319 |
+
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
320 |
+
slice_df, label = _paginate(last_result_df, 1)
|
321 |
+
default_sort = rename_columns.get("marketCap","marketCap")
|
322 |
+
return slice_df, label, 1, "", "", default_sort, ""
|
323 |
+
|
324 |
+
|
325 |
+
# ---------------------------------------------------------------------------
|
326 |
+
# DATOS INICIALES -----------------------------------------------------------
|
327 |
+
# ---------------------------------------------------------------------------
|
328 |
+
|
329 |
+
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
330 |
+
_initial_slice, _initial_label = _paginate(last_result_df, 1)
|
331 |
+
|
332 |
+
# ---------------------------------------------------------------------------
|
333 |
+
# UI ------------------------------------------------------------------------
|
334 |
+
# ---------------------------------------------------------------------------
|
335 |
+
|
336 |
+
def _load_html(name: str) -> str:
|
337 |
+
return (ROOT / "html" / name).read_text(encoding="utf-8")
|
338 |
+
|
339 |
+
html_front_layout = _load_html("front_layout.html")
|
340 |
+
|
341 |
+
with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
342 |
+
gr.HTML(html_front_layout)
|
343 |
+
|
344 |
+
# ---------------------- TOP INPUT -------------------------------------
|
345 |
+
with gr.Row(equal_height=True):
|
346 |
+
theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
|
347 |
+
ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol", scale=1)
|
348 |
+
buscar_button = gr.Button("Search")
|
349 |
+
gr.HTML("<div></div>")
|
350 |
+
reset_button = gr.Button("Reset", elem_classes="small-btn")
|
351 |
+
# gr.HTML("<div></div>")
|
352 |
+
random_button = gr.Button("Random ticker", elem_classes="small-btn")
|
353 |
+
|
354 |
+
# ---------------------- SEARCH SUMMARY ------------------------
|
355 |
+
summary_display = gr.Markdown("", elem_classes="search-spec")
|
356 |
+
|
357 |
+
# ---------------------- DATAFRAME & PAGINATION ------------------------
|
358 |
+
|
359 |
+
output_df = gr.Dataframe(
|
360 |
+
value=_initial_slice,
|
361 |
+
interactive=False,
|
362 |
+
elem_classes="clickable-columns",
|
363 |
+
# max_height=500
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
# ---------------------- PAGINATION AND SORT CONTROLS ---------------------
|
368 |
+
with gr.Row():
|
369 |
+
btn_prev = gr.Button("Previous", elem_classes="small-btn")
|
370 |
+
pagination_label = gr.Markdown(_initial_label)
|
371 |
+
btn_next = gr.Button("Next", elem_classes="small-btn")
|
372 |
+
gr.Markdown(" " * 20)
|
373 |
+
# merged sort controls on right
|
374 |
+
sort_col = gr.Dropdown(
|
375 |
+
choices=[rename_columns.get(c, c) for c in caracteristicas],
|
376 |
+
value=None,
|
377 |
+
label="Reset and sort by:",
|
378 |
+
allow_custom_value=False,
|
379 |
+
scale=2,
|
380 |
+
)
|
381 |
+
sort_dir = gr.Radio(
|
382 |
+
choices=["Ascending", "Descending"],
|
383 |
+
value="Descending",
|
384 |
+
label="",
|
385 |
+
scale=1,
|
386 |
+
)
|
387 |
+
|
388 |
+
page_state = gr.State(1)
|
389 |
+
|
390 |
+
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
391 |
+
# De momento excluimos esta funcionalidad, al menos en la tabla de acciones,
|
392 |
+
# por la complejidad que añade (es una herencia del buscador de fondos de inversión)
|
393 |
+
# Potencial mejora para cuando incorporemos la tabla de ETFs
|
394 |
+
'''
|
395 |
+
with gr.Row():
|
396 |
+
toggle_components = [
|
397 |
+
gr.Checkbox(value=True, label=rename_columns.get(k, k)) for k in filtros_keys
|
398 |
+
]
|
399 |
+
'''
|
400 |
+
|
401 |
+
# ---------------------- HELPERS ---------------------------------------
|
402 |
+
def reset_page():
|
403 |
+
return 1
|
404 |
+
|
405 |
+
def prev_page(p):
|
406 |
+
return max(p - 1, 1)
|
407 |
+
|
408 |
+
def next_page(p):
|
409 |
+
return p + 1
|
410 |
+
|
411 |
+
def search_inputs():
|
412 |
+
return [theme_input, ticker_input, page_state]
|
413 |
+
|
414 |
+
def random_action() -> tuple[str,int,str]:
|
415 |
+
return utils.random_ticker(maestro), 1, ""
|
416 |
+
|
417 |
+
# ---------------------- BINDINGS --------------------------------------
|
418 |
+
# search_dynamic -> search_all
|
419 |
+
inputs = [theme_input, ticker_input, page_state]
|
420 |
+
|
421 |
+
buscar_button.click(
|
422 |
+
search_all,
|
423 |
+
inputs=inputs,
|
424 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
425 |
+
)
|
426 |
+
|
427 |
+
ticker_input.submit(
|
428 |
+
reset_page, None, page_state
|
429 |
+
).then(
|
430 |
+
search_all,
|
431 |
+
inputs=inputs,
|
432 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
433 |
+
)
|
434 |
+
|
435 |
+
theme_input.submit(
|
436 |
+
reset_page, None, page_state
|
437 |
+
).then(
|
438 |
+
search_all,
|
439 |
+
inputs=inputs,
|
440 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
441 |
+
)
|
442 |
+
|
443 |
+
random_button.click(
|
444 |
+
random_action,
|
445 |
+
None,
|
446 |
+
[ticker_input, page_state, theme_input]
|
447 |
+
).then(
|
448 |
+
search_all,
|
449 |
+
inputs=inputs,
|
450 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
451 |
+
)
|
452 |
+
|
453 |
+
reset_button.click(
|
454 |
+
reset_initial,
|
455 |
+
None,
|
456 |
+
[output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
|
457 |
+
)
|
458 |
+
|
459 |
+
btn_prev.click(
|
460 |
+
prev_page, page_state, page_state
|
461 |
+
).then(
|
462 |
+
page_change,
|
463 |
+
inputs=inputs,
|
464 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
465 |
+
)
|
466 |
+
|
467 |
+
btn_next.click(
|
468 |
+
next_page, page_state, page_state
|
469 |
+
).then(
|
470 |
+
page_change,
|
471 |
+
inputs=inputs,
|
472 |
+
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
|
473 |
+
)
|
474 |
+
|
475 |
+
sort_col.change(
|
476 |
+
apply_sort,
|
477 |
+
inputs=[sort_col, sort_dir],
|
478 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
479 |
+
)
|
480 |
+
|
481 |
+
sort_dir.change(
|
482 |
+
apply_sort,
|
483 |
+
inputs=[sort_col, sort_dir],
|
484 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
485 |
+
)
|
486 |
+
|
487 |
+
# ---------------------- FILTERS BY COLUMN ------------------ #
|
488 |
+
filterable_columns = [rename_columns.get(c, c) for c in cat_cols]
|
489 |
+
|
490 |
+
|
491 |
+
def filter_by_column(evt: gr.SelectData) -> tuple[pd.DataFrame,str,int,str]:
|
492 |
+
global last_result_df, last_column_filters
|
493 |
+
if last_result_df.empty:
|
494 |
+
return pd.DataFrame(), "Page 1 of 1", 1, _compose_summary()
|
495 |
+
|
496 |
+
col = last_result_df.columns[evt.index[1]]
|
497 |
+
# print(f"DEBUG: resolving to column #{evt.index[1]} → '{col}'")
|
498 |
+
val = evt.value
|
499 |
+
last_column_filters.append((col, val))
|
500 |
+
filtered = last_result_df[last_result_df[col] == val]
|
501 |
+
last_result_df = filtered.copy()
|
502 |
+
slice_df, label = _paginate(last_result_df, 1)
|
503 |
+
summary = _compose_summary()
|
504 |
+
return slice_df, label, 1, summary
|
505 |
+
|
506 |
+
|
507 |
+
output_df.select(
|
508 |
+
filter_by_column,
|
509 |
+
outputs=[output_df, pagination_label, page_state, summary_display]
|
510 |
+
)
|
511 |
+
|
512 |
+
# ---------------------------------------------------------------------------
|
513 |
+
# LAUNCH --------------------------------------------------------------------
|
514 |
+
# ---------------------------------------------------------------------------
|
515 |
+
|
516 |
+
if __name__ == "__main__":
|
517 |
+
front.launch()
|