Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,45 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import re
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Function to clean and truncate the generated text after encountering unwanted content
|
5 |
+
def clean_and_truncate_text(text):
|
6 |
+
# Remove any special tokens like [INST], [/INST], etc.
|
7 |
+
cleaned_text = re.sub(r"\[.*?\]", "", text) # Remove square-bracket content
|
8 |
+
cleaned_text = cleaned_text.replace("</s>", "") # Remove any leftover closing tag
|
9 |
+
cleaned_text = cleaned_text.strip() # Remove leading/trailing whitespace
|
10 |
+
|
11 |
+
# Split the text and only keep the part before repetitive content or newlines
|
12 |
+
truncated_text = cleaned_text.split('\n')[0] # Split by newline and take the first line
|
13 |
+
truncated_text = truncated_text.split('----')[0] # Stop at the first '----' if it appears
|
14 |
+
return truncated_text.strip() # Return cleaned and truncated text
|
15 |
+
|
16 |
+
# Function to generate the model's response and print only the question and the first valid answer
|
17 |
+
def chat_with_model(question):
|
18 |
+
# Format the question for the model
|
19 |
+
user_prompt = f"<s>[INST] {question} [/INST]"
|
20 |
+
|
21 |
+
# Initialize the text generation pipeline
|
22 |
+
text_generation_pipeline = pipeline(task="text-generation", model=llama_model, tokenizer=llama_tokenizer, max_length=100)
|
23 |
+
|
24 |
+
# Generate the answer from the model
|
25 |
+
model_answer = text_generation_pipeline(user_prompt)
|
26 |
+
generated_answer = model_answer[0]['generated_text']
|
27 |
+
|
28 |
+
# Clean and truncate the generated answer
|
29 |
+
cleaned_generated_answer = clean_and_truncate_text(generated_answer)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
return cleaned_generated_answer
|
34 |
+
|
35 |
+
# Create Gradio interface
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=generate_answer,
|
38 |
+
inputs="text",
|
39 |
+
outputs="text",
|
40 |
+
title="Amharic Question-Answer Model",
|
41 |
+
description="Ask a question and get an answer based on the fine-tuned LLaMA model."
|
42 |
+
)
|
43 |
+
|
44 |
+
# Launch the Gradio interface
|
45 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|