redietmolla commited on
Commit
df433f9
·
verified ·
1 Parent(s): c645e2e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -63
app.py CHANGED
@@ -1,63 +1,45 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import re
2
+ from transformers import pipeline
3
+
4
+ # Function to clean and truncate the generated text after encountering unwanted content
5
+ def clean_and_truncate_text(text):
6
+ # Remove any special tokens like [INST], [/INST], etc.
7
+ cleaned_text = re.sub(r"\[.*?\]", "", text) # Remove square-bracket content
8
+ cleaned_text = cleaned_text.replace("</s>", "") # Remove any leftover closing tag
9
+ cleaned_text = cleaned_text.strip() # Remove leading/trailing whitespace
10
+
11
+ # Split the text and only keep the part before repetitive content or newlines
12
+ truncated_text = cleaned_text.split('\n')[0] # Split by newline and take the first line
13
+ truncated_text = truncated_text.split('----')[0] # Stop at the first '----' if it appears
14
+ return truncated_text.strip() # Return cleaned and truncated text
15
+
16
+ # Function to generate the model's response and print only the question and the first valid answer
17
+ def chat_with_model(question):
18
+ # Format the question for the model
19
+ user_prompt = f"<s>[INST] {question} [/INST]"
20
+
21
+ # Initialize the text generation pipeline
22
+ text_generation_pipeline = pipeline(task="text-generation", model=llama_model, tokenizer=llama_tokenizer, max_length=100)
23
+
24
+ # Generate the answer from the model
25
+ model_answer = text_generation_pipeline(user_prompt)
26
+ generated_answer = model_answer[0]['generated_text']
27
+
28
+ # Clean and truncate the generated answer
29
+ cleaned_generated_answer = clean_and_truncate_text(generated_answer)
30
+
31
+
32
+
33
+ return cleaned_generated_answer
34
+
35
+ # Create Gradio interface
36
+ iface = gr.Interface(
37
+ fn=generate_answer,
38
+ inputs="text",
39
+ outputs="text",
40
+ title="Amharic Question-Answer Model",
41
+ description="Ask a question and get an answer based on the fine-tuned LLaMA model."
42
+ )
43
+
44
+ # Launch the Gradio interface
45
+ iface.launch()