Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 99,008 Bytes
3c72b91 4a5aabd b9ed846 4a5aabd b645bcc 3c72b91 4a5aabd b645bcc 4a5aabd b9ed846 4a5aabd b645bcc b9ed846 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd 13a693b 4a5aabd 13a693b 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd b645bcc 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 59bc8b3 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd 3c72b91 4a5aabd b9ed846 b645bcc b9ed846 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 3c72b91 8c18698 3c72b91 8c18698 4a5aabd 8c18698 4a5aabd a985bfc 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 83bbd08 4a5aabd 95ea941 4a5aabd 95ea941 83bbd08 95ea941 4a5aabd 95ea941 4a5aabd 1472f6b 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 8c18698 4a5aabd 59bc8b3 4a5aabd 90bf4d7 59bc8b3 1472f6b 90bf4d7 59bc8b3 90bf4d7 59bc8b3 90bf4d7 59bc8b3 fb8117a 4a5aabd 59bc8b3 95ea941 1472f6b 90bf4d7 1472f6b 4a5aabd 1472f6b 4a5aabd 8c18698 4a5aabd a985bfc 4a5aabd a985bfc 4a5aabd 9dc404a 4a5aabd 7beea6c 4a5aabd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 |
"""
多模态大语言模型聊天Demo - 网络优化版本
主要优化:
1. 缓冲机制:积累多个chunk后再yield,减少网络交互次数(50-80%)
2. State更新优化:降低state更新频率,减少数据传输量
3. 超时配置优化:增加代理超时时间,提高网络容错性
4. 图像质量优化:保持原始尺寸和高质量编码,不进行缩放
这些优化可显著改善网络延迟高时的前端卡顿问题,同时保证图像质量。
"""
import os
import uuid
import json
import base64
import io
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from openai import OpenAI
import requests
from typing import Generator, Dict, Any, List, Union
import logging
import time
from PIL import Image
import datetime
# =========== Configuration
# MODEL NAME
model = os.getenv("MODEL_NAME")
# 代理服务器配置 - 支持多个URL用逗号分隔
PROXY_BASE_URLS = [url.strip() for url in os.getenv("PROXY_API_BASE", "http://localhost:8000").split(",") if url.strip()]
PROXY_TIMEOUT = int(os.getenv("PROXY_TIMEOUT", 300)) # 增加超时时间从30秒到60秒
MAX_RETRIES = int(os.getenv("MAX_RETRIES", 5))
# 负载均衡配置
current_proxy_index = 0 # 用于轮询的当前索引
# 保存历史
save_history = True
# 保存对话日志
save_conversation = False
# =========== Configuration
# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# =========== 负载均衡机制
def get_next_proxy_url():
"""获取下一个代理URL(轮询方式)"""
global current_proxy_index
if not PROXY_BASE_URLS:
raise Exception("No proxy URLs configured")
proxy_url = PROXY_BASE_URLS[current_proxy_index]
current_proxy_index = (current_proxy_index + 1) % len(PROXY_BASE_URLS)
logger.info(f"Selected proxy URL: {proxy_url} (index: {current_proxy_index-1 if current_proxy_index > 0 else len(PROXY_BASE_URLS)-1})")
return proxy_url
def get_all_proxy_urls():
"""获取所有代理URL列表"""
return PROXY_BASE_URLS.copy()
# =========== 负载均衡机制
# =========== 对话日志功能
# 创建对话日志文件夹
if save_conversation:
CONVERSATION_LOG_DIR = "conversation_logs"
os.makedirs(CONVERSATION_LOG_DIR, exist_ok=True)
def save_conversation_log(history_messages, assistant_content, metadata=None):
"""保存对话日志到JSON文件"""
if not save_conversation:
return
try:
timestamp = datetime.datetime.now()
filename = f"gradio_app_{timestamp.strftime('%Y%m%d_%H%M%S_%f')}.json"
filepath = os.path.join(CONVERSATION_LOG_DIR, filename)
log_data = {
"timestamp": timestamp.isoformat(),
"history_messages": history_messages, # 原封不动保存发送给模型的消息
"assistant_content": assistant_content,
"metadata": metadata or {}
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(log_data, f, ensure_ascii=False, indent=2)
logger.info(f"对话日志已保存: {filepath}")
except Exception as e:
logger.error(f"保存对话日志失败: {str(e)}")
# =========== 图像处理工具函数
def encode_image_to_base64(image_path_or_pil: Union[str, Image.Image]) -> str:
"""将图像文件或PIL图像对象转换为base64编码字符串"""
try:
if isinstance(image_path_or_pil, str):
# 如果是文件路径
with open(image_path_or_pil, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
else:
# 如果是PIL图像对象,尽量保持原始格式和质量
buffer = io.BytesIO()
# 检测原始格式,优先保持原格式
original_format = getattr(image_path_or_pil, 'format', None)
if image_path_or_pil.mode == 'RGBA':
# 如果是RGBA模式且原格式支持透明度,优先保存为PNG
if original_format in ['PNG', 'WEBP'] or original_format is None:
image_path_or_pil.save(buffer, format="PNG") # PNG无损保存
else:
# 否则转换为RGB并保存为高质量JPEG
rgb_image = Image.new('RGB', image_path_or_pil.size, (255, 255, 255))
rgb_image.paste(image_path_or_pil, mask=image_path_or_pil.split()[-1])
rgb_image.save(buffer, format="JPEG", quality=95)
else:
# 非RGBA模式,根据原格式选择保存方式
if original_format == 'PNG':
image_path_or_pil.save(buffer, format="PNG") # PNG无损保存
elif original_format in ['WEBP', 'BMP', 'TIFF']:
# 其他格式转为高质量JPEG
image_path_or_pil.save(buffer, format="JPEG", quality=95)
else:
# 默认保存为高质量JPEG
image_path_or_pil.save(buffer, format="JPEG", quality=95)
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
return image_base64
except Exception as e:
logger.error(f"Error encoding image to base64: {str(e)}")
raise
def create_multimodal_content(text: str, images: List[Union[str, Image.Image]] = None) -> List[Dict]:
"""创建多模态内容格式,兼容OpenAI API"""
content = []
# 添加文本内容
if text and text.strip():
content.append({
"type": "text",
"text": text
})
# 添加图像内容
if images:
for i, image in enumerate(images):
try:
image_base64 = encode_image_to_base64(image)
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
})
logger.info(f"Added image {i+1}/{len(images)} to multimodal content")
except Exception as e:
logger.error(f"Failed to process image {i+1}: {str(e)}")
continue
return content if content else [{"type": "text", "text": text or ""}]
def convert_images_to_base64_list(images: List[Union[str, Image.Image]]) -> List[str]:
"""将图片列表转换为base64字符串列表,用于持久化存储"""
base64_images = []
for i, image in enumerate(images):
try:
base64_str = encode_image_to_base64(image)
base64_images.append(base64_str)
logger.info(f"Converted image {i+1}/{len(images)} to base64 for storage")
except Exception as e:
logger.error(f"Failed to convert image {i+1} to base64: {str(e)}")
continue
return base64_images
def restore_images_from_base64_list(base64_images: List[str]) -> List[Image.Image]:
"""从base64字符串列表恢复图片对象"""
images = []
for i, base64_str in enumerate(base64_images):
try:
image_data = base64.b64decode(base64_str)
image = Image.open(io.BytesIO(image_data))
images.append(image)
logger.info(f"Restored image {i+1}/{len(base64_images)} from base64")
except Exception as e:
logger.error(f"Failed to restore image {i+1} from base64: {str(e)}")
continue
return images
class DeltaObject:
"""模拟OpenAI Delta对象"""
def __init__(self, data: dict):
self.content = data.get('content')
self.role = data.get('role')
class ChoiceObject:
"""模拟OpenAI Choice对象"""
def __init__(self, choice_data: dict):
delta_data = choice_data.get('delta', {})
self.delta = DeltaObject(delta_data)
self.finish_reason = choice_data.get('finish_reason')
self.index = choice_data.get('index', 0)
class ChunkObject:
"""模拟OpenAI Chunk对象"""
def __init__(self, chunk_data: dict):
choices_data = chunk_data.get('choices', [])
self.choices = [ChoiceObject(choice) for choice in choices_data]
self.id = chunk_data.get('id', '')
self.object = chunk_data.get('object', 'chat.completion.chunk')
self.created = chunk_data.get('created', 0)
self.model = chunk_data.get('model', '')
class ProxyClient:
"""代理客户端,用于与中间服务通信,支持负载均衡"""
def __init__(self, timeout: int = 30):
self.timeout = timeout
self.session = requests.Session()
def chat_completions_create(self, model: str, messages: list, stream: bool = True, **kwargs):
"""创建聊天完成请求 - 使用负载均衡选择代理"""
base_url = get_next_proxy_url().rstrip('/') # 动态获取下一个代理URL
if base_url.endswith('/v1'):
url = f"{base_url}/chat/completions"
else:
url = f"{base_url}/v1/chat/completions"
payload = {
"model": model,
"messages": messages,
"stream": stream,
**kwargs
}
try:
response = self.session.post(
url,
json=payload,
stream=stream,
timeout=self.timeout,
headers={"Content-Type": "application/json"}
)
response.raise_for_status()
if stream:
return self._parse_stream_response(response)
else:
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {str(e)}")
raise Exception(f"Failed to connect to proxy server: {str(e)}")
def _parse_stream_response(self, response) -> Generator[ChunkObject, None, None]:
"""解析流式响应"""
try:
# 确保响应编码正确
response.encoding = 'utf-8'
for line in response.iter_lines(decode_unicode=True):
if not line:
continue
line = line.strip()
if line.startswith('data: '):
data = line[6:] # 移除 'data: ' 前缀
if data == '[DONE]':
break
try:
chunk_data = json.loads(data)
# 检查是否是错误响应
if 'error' in chunk_data:
raise Exception(f"Stream error: {chunk_data.get('detail', chunk_data['error'])}")
# 创建与OpenAI客户端兼容的响应对象
yield ChunkObject(chunk_data)
except json.JSONDecodeError as e:
logger.warning(f"Failed to parse JSON: {data}, error: {str(e)}")
continue
except Exception as e:
logger.error(f"Error parsing stream response: {str(e)}")
raise
def health_check(self, specific_url: str = None) -> dict:
"""健康检查 - 可以检查特定URL或使用负载均衡选择"""
if specific_url:
base_url = specific_url.rstrip('/')
else:
base_url = get_next_proxy_url().rstrip('/')
try:
url = f"{base_url}/health"
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
# 处理空响应体的情况
if response.text.strip():
result = response.json()
else:
# 如果响应体为空但状态码是200,认为服务健康
logger.info(f"Health check for {base_url} returned empty response with 200 status, assuming healthy")
result = {"status": "healthy"}
result["proxy_url"] = base_url # 添加代理URL信息
return result
except Exception as e:
logger.error(f"Health check failed for {base_url}: {str(e)}")
return {"status": "unhealthy", "error": str(e), "proxy_url": base_url}
def health_check_all(self) -> dict:
"""检查所有代理服务器的健康状态"""
results = {}
all_urls = get_all_proxy_urls()
for i, url in enumerate(all_urls):
results[f"proxy_{i}"] = self.health_check(specific_url=url)
# 统计健康状态
healthy_count = sum(1 for result in results.values() if result.get("status") == "healthy")
total_count = len(results)
return {
"overall_status": "healthy" if healthy_count > 0 else "unhealthy",
"healthy_proxies": healthy_count,
"total_proxies": total_count,
"proxy_details": results
}
# 初始化代理客户端
client = ProxyClient(PROXY_TIMEOUT)
# 显示代理配置信息
logger.info("=== 代理服务器配置 ===")
logger.info(f"配置的代理服务器数量: {len(PROXY_BASE_URLS)}")
for i, url in enumerate(PROXY_BASE_URLS):
logger.info(f"代理 {i+1}: {url}")
logger.info(f"代理超时时间: {PROXY_TIMEOUT}秒")
logger.info(f"最大重试次数: {MAX_RETRIES}")
if len(PROXY_BASE_URLS) > 1:
logger.info("负载均衡模式: 轮询 (Round-robin)")
logger.info("========================")
def chat_with_retry(history_messages, max_retries=MAX_RETRIES):
"""带重试机制的聊天函数,支持代理故障转移"""
last_exception = None
failed_proxies = set() # 记录失败的代理
# 如果有多个代理,每个代理都尝试一次,然后再进行常规重试
total_proxies = len(PROXY_BASE_URLS)
max_proxy_attempts = min(total_proxies, max_retries)
for attempt in range(max_retries):
try:
logger.info(f"Chat attempt {attempt + 1}/{max_retries}")
# 如果在前几次尝试中,且有多个代理可用,进行健康检查
if attempt < max_proxy_attempts and total_proxies > 1:
# 检查当前要使用的代理是否健康
current_proxy_to_check = PROXY_BASE_URLS[current_proxy_index % total_proxies]
if current_proxy_to_check not in failed_proxies:
health = client.health_check(specific_url=current_proxy_to_check)
if health.get("status") != "healthy":
logger.warning(f"Proxy {current_proxy_to_check} is unhealthy, marking as failed")
failed_proxies.add(current_proxy_to_check)
# 跳过此代理,尝试下一个
continue
response = client.chat_completions_create(
model=model,
messages=history_messages,
stream=True,
temperature=0.7,
top_p=0.9,
max_tokens=50000
)
return response
except Exception as e:
last_exception = e
current_failed_proxy = None
# 尝试从错误信息中识别失败的代理
try:
current_failed_proxy = PROXY_BASE_URLS[(current_proxy_index - 1) % total_proxies]
failed_proxies.add(current_failed_proxy)
logger.warning(f"Attempt {attempt + 1} failed with proxy {current_failed_proxy}: {str(e)}")
except:
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < max_retries - 1:
# 如果还有未尝试的代理,立即尝试下一个
if len(failed_proxies) < total_proxies and attempt < max_proxy_attempts:
logger.info(f"Trying next proxy immediately...")
continue
else:
# 指数退避
wait_time = min(2 ** (attempt - max_proxy_attempts + 1), 4) if attempt >= max_proxy_attempts else 1
logger.info(f"Retrying in {wait_time} seconds...")
time.sleep(wait_time)
else:
logger.error(f"All {max_retries} attempts failed across {len(failed_proxies)}/{total_proxies} proxies")
raise last_exception
is_modelscope_studio = os.getenv('MODELSCOPE_ENVIRONMENT') == 'studio'
def get_text(text: str, cn_text: str):
if is_modelscope_studio:
return cn_text
return text
logo_img = os.path.join(os.path.dirname(__file__), "rednote_hilab.png")
DEFAULT_CONVERSATIONS_HISTORY = [{"role": "placeholder"}]
DEFAULT_LOCALE = 'zh_CN' if is_modelscope_studio else 'en_US'
DEFAULT_THEME = {
"token": {
"colorPrimary": "#6A57FF",
}
}
def format_history(history):
messages = [{
"role": "system",
"content": "",
}]
for item in history:
if item["role"] == "user":
# 支持多模态内容格式
content = item["content"]
if isinstance(content, dict):
if "multimodal" in content:
# 如果是保存的多模态内容,直接使用
messages.append({
"role": "user",
"content": content["multimodal"]
})
logger.info(f"Added multimodal message with {content.get('images_count', 0)} images to context")
elif "images_base64" in content:
# 如果有base64图片数据,重新构建多模态内容
text = content.get("text", "")
images_base64 = content.get("images_base64", [])
if images_base64:
# 从base64恢复图片并创建多模态内容
restored_images = restore_images_from_base64_list(images_base64)
multimodal_content = create_multimodal_content(text, restored_images)
messages.append({
"role": "user",
"content": multimodal_content
})
logger.info(f"Restored and added multimodal message with {len(restored_images)} images to context")
else:
# 没有图片,只有文本
messages.append({"role": "user", "content": text})
else:
# 如果content是复杂对象,提取text字段
text_content = content.get("text", str(content))
messages.append({"role": "user", "content": text_content})
else:
# 传统文本内容
messages.append({"role": "user", "content": content})
elif item["role"] == "assistant":
# 助手消息:合并thinking内容和content,保持原始格式
assistant_content = item["content"] or ""
# 检查是否有thinking内容需要合并
thinking_content = item.get("meta", {}).get("thinking_content", "")
if thinking_content:
# 重建完整的原始输出,不添加额外换行符
# thinking_content 和 assistant_content 都已包含原始的换行符
full_content = f"<think>{thinking_content}</think>{assistant_content}"
else:
full_content = assistant_content
messages.append({"role": "assistant", "content": full_content})
return messages
class Gradio_Events:
@staticmethod
def _submit(state_value):
history = state_value["conversations_history"][
state_value["conversation_id"]]
# submit
history_messages = format_history(history)
history.append({
"role": "assistant",
"content": "",
"key": str(uuid.uuid4()),
"meta": {
"reason_content": "",
"thinking_content": "", # 添加thinking内容存储
"is_thinking": False, # 添加thinking状态
"thinking_done": False # 添加thinking完成状态
},
"loading": True,
})
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value),
}
try:
response = chat_with_retry(history_messages)
thought_done = False
in_thinking = False
accumulated_content = ""
# 缓冲逻辑变量
buffer_content = "" # 临时缓冲内容
last_yield_time = time.time()
chunk_count = 0
state_update_count = 0 # state更新计数器
BUFFER_INTERVAL = 0.5 # 秒 - 缓冲时间间隔,减少网络交互频率
BUFFER_CHUNKS = 5 # 每5个chunk强制yield - 平衡实时性和性能
STATE_UPDATE_INTERVAL = 3 # 每3次yield更新一次state - 减少state传输频率
# 优化state更新策略:减少不必要的历史数据传输
for chunk in response:
# 安全地访问chunk属性
if chunk.choices and len(chunk.choices) > 0:
content = chunk.choices[0].delta.content
else:
content = None
raise ValueError('Content is None')
history[-1]["loading"] = False
print(content, end='')
if content:
accumulated_content += content
buffer_content += content # 添加到缓冲
chunk_count += 1
# 检查是否进入thinking模式
if "<think>" in accumulated_content and not in_thinking:
in_thinking = True
history[-1]["meta"]["is_thinking"] = True
# 提取thinking标签之前的内容并保存
before_think = accumulated_content.split("<think>")[0]
if before_think.strip():
# 保存thinking之前的内容
history[-1]["content"] = before_think
# 重置accumulated_content为thinking标签后的内容
think_parts = accumulated_content.split("<think>", 1)
if len(think_parts) > 1:
accumulated_content = think_parts[1]
else:
accumulated_content = ""
# 立即yield thinking状态变化,这种重要状态变化总是需要更新state
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value)
}
buffer_content = "" # 重置缓冲
last_yield_time = time.time()
chunk_count = 0
continue
# 检查是否退出thinking模式
if "</think>" in accumulated_content and in_thinking:
in_thinking = False
history[-1]["meta"]["is_thinking"] = False
history[-1]["meta"]["thinking_done"] = True
history[-1]["meta"]["just_finished_thinking"] = True # 标记刚完成thinking
# 分离thinking内容和后续内容
think_parts = accumulated_content.split("</think>", 1)
thinking_content = think_parts[0]
history[-1]["meta"]["thinking_content"] = thinking_content
# 处理thinking后的内容 - 追加而不是覆盖
if len(think_parts) > 1:
after_think_content = think_parts[1]
if after_think_content.strip():
# 如果之前已有内容,则追加;否则直接设置
current_content = history[-1]["content"] or ""
history[-1]["content"] = current_content + after_think_content
accumulated_content = "" # 重置累积内容
# 立即yield thinking完成状态,这种重要状态变化总是需要更新state
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value)
}
buffer_content = "" # 重置缓冲
last_yield_time = time.time()
chunk_count = 0
continue
# 缓冲检查:时间或chunk数达到时 yield
current_time = time.time()
should_yield = False
if (current_time - last_yield_time >= BUFFER_INTERVAL) or (chunk_count >= BUFFER_CHUNKS):
should_yield = True
# 在thinking模式中,更新thinking内容
if in_thinking:
# 检查是否包含完整的thinking结束标签
if "</think>" not in accumulated_content:
history[-1]["meta"]["thinking_content"] = accumulated_content
if should_yield:
state_update_count += 1
# 条件更新state:只在特定间隔更新
should_update_state = (state_update_count % STATE_UPDATE_INTERVAL == 0)
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value) if should_update_state else gr.skip()
}
buffer_content = ""
last_yield_time = current_time
chunk_count = 0
else:
# 如果不在thinking模式中,正常添加内容到content
if not thought_done:
thought_done = True
if not history[-1]["content"]: # 如果content为空才初始化
history[-1]["content"] = ""
# 应用缓冲内容到history
if should_yield:
# 将缓冲的内容添加到content中
history[-1]["content"] += buffer_content
# 清除"刚完成thinking"标记,因为现在在正常输出内容
if history[-1]["meta"].get("just_finished_thinking"):
history[-1]["meta"]["just_finished_thinking"] = False
state_update_count += 1
# 条件更新state:只在特定间隔更新
should_update_state = (state_update_count % STATE_UPDATE_INTERVAL == 0)
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value) if should_update_state else gr.skip()
}
# 重置缓冲
buffer_content = ""
last_yield_time = current_time
chunk_count = 0
else:
# 不yield,但需要更新content以保持逻辑一致性
# 注意:这里不直接添加content,而是等待缓冲yield时一起添加
pass
# 循环结束后,处理剩余的缓冲内容
if buffer_content:
if in_thinking:
# 如果还在thinking模式中,更新thinking内容
history[-1]["meta"]["thinking_content"] = accumulated_content
else:
# 如果不在thinking模式中,添加剩余内容
if not history[-1]["content"]:
history[-1]["content"] = ""
history[-1]["content"] += buffer_content
# 清除"刚完成thinking"标记
if history[-1]["meta"].get("just_finished_thinking"):
history[-1]["meta"]["just_finished_thinking"] = False
# 最终yield,确保所有内容都被发送并强制更新state
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value) # 最终总是更新state
}
history[-1]["meta"]["end"] = True
print("Answer: ", history[-1]["content"])
# 保存对话日志(如果启用)
if save_conversation:
# 获取用户消息(倒数第二个消息)
user_message = None
for i in range(len(history) - 2, -1, -1):
if history[i]["role"] == "user":
user_message = history[i]
break
if user_message:
save_conversation_log(
history_messages=history_messages, # 这是发送给模型的原始数据
assistant_content=history[-1]["content"],
metadata={
"model": model,
"proxy_base_urls": PROXY_BASE_URLS,
"conversation_id": state_value["conversation_id"],
"thinking_content": history[-1]["meta"].get("thinking_content", ""),
"has_thinking": bool(history[-1]["meta"].get("thinking_content"))
}
)
except Exception as e:
history[-1]["loading"] = False
history[-1]["meta"]["end"] = True
history[-1]["meta"]["error"] = True
history[-1]["content"] = "Failed to respond, please try again."
yield {
chatbot: gr.update(items=history),
state: gr.update(value=state_value)
}
print('Error: ',e)
raise e
@staticmethod
def submit(sender_value, state_value):
if not state_value["conversation_id"]:
random_id = str(uuid.uuid4())
history = []
state_value["conversation_id"] = random_id
state_value["conversations_history"][random_id] = history
# 使用文本内容作为对话标签
label = sender_value if isinstance(sender_value, str) else "New Chat"
state_value["conversations"].append({
"label": label,
"key": random_id
})
history = state_value["conversations_history"][
state_value["conversation_id"]]
# 处理多模态内容
uploaded_images = state_value.get("uploaded_images", [])
if uploaded_images:
# 创建多模态内容
multimodal_content = create_multimodal_content(sender_value, uploaded_images)
# 转换图片为base64用于持久化存储
images_base64 = convert_images_to_base64_list(uploaded_images)
message_content = {
"text": sender_value,
"images_count": len(uploaded_images), # 保存图片数量
"images_base64": images_base64, # 保存base64图片数据
"multimodal": multimodal_content # 用于API调用的多模态内容
}
logger.info(f"Saving message with {len(uploaded_images)} images to history")
# 清空已上传的图片
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
else:
# 纯文本内容
message_content = sender_value
history.append({
"role": "user",
"meta": {},
"key": str(uuid.uuid4()),
"content": message_content
})
# preprocess submit
yield Gradio_Events.preprocess_submit()(state_value)
try:
for chunk in Gradio_Events._submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
# postprocess submit - 包括清空图片上传组件
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def regenerate_message(state_value, e: gr.EventData):
conversation_key = e._data["component"]["conversationKey"]
history = state_value["conversations_history"][
state_value["conversation_id"]]
index = -1
for i, conversation in enumerate(history):
if conversation["key"] == conversation_key:
index = i
break
if index == -1:
yield gr.skip()
history = history[:index]
state_value["conversations_history"][
state_value["conversation_id"]] = history
yield {
chatbot:gr.update(items=history),
state: gr.update(value=state_value)
}
# preprocess submit
yield Gradio_Events.preprocess_submit(clear_input=False)(state_value)
try:
for chunk in Gradio_Events._submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
# postprocess submit
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def preprocess_submit(clear_input=True):
def preprocess_submit_handler(state_value):
history = state_value["conversations_history"][
state_value["conversation_id"]]
for conversation in history:
if "meta" in conversation:
conversation["meta"]["disabled"] = True
return {
sender: gr.update(value=None, loading=True) if clear_input else gr.update(loading=True),
conversations:
gr.update(active_key=state_value["conversation_id"],
items=list(
map(
lambda item: {
**item,
"disabled":
True if item["key"] != state_value[
"conversation_id"] else False,
}, state_value["conversations"]))),
add_conversation_btn:
gr.update(disabled=True),
clear_btn:
gr.update(disabled=True),
conversation_delete_menu_item:
gr.update(disabled=True),
chatbot:
gr.update(items=history),
state:
gr.update(value=state_value),
image_upload: gr.update(value=None), # 发送消息时立即清空图片上传组件
green_image_indicator: gr.update(count=0, elem_style=dict(display="block")), # 左侧绿色指示器显示0
trash_button: gr.update(elem_style=dict(display="none")), # 隐藏垃圾桶按钮
stop_btn: gr.update(visible=True) # 显示停止按钮
}
return preprocess_submit_handler
@staticmethod
def postprocess_submit(state_value):
history = state_value["conversations_history"][
state_value["conversation_id"]]
for conversation in history:
if "meta" in conversation:
conversation["meta"]["disabled"] = False
return {
sender: gr.update(loading=False),
conversation_delete_menu_item: gr.update(disabled=False),
clear_btn: gr.update(disabled=False),
conversations: gr.update(items=state_value["conversations"]),
add_conversation_btn: gr.update(disabled=False),
chatbot: gr.update(items=history),
state: gr.update(value=state_value),
stop_btn: gr.update(visible=False) # 隐藏停止按钮
}
@staticmethod
def cancel(state_value):
history = state_value["conversations_history"][
state_value["conversation_id"]]
history[-1]["loading"] = False
history[-1]["meta"]["end"] = True
history[-1]["meta"]["canceled"] = True
return Gradio_Events.postprocess_submit(state_value)
@staticmethod
def delete_message(state_value, e: gr.EventData):
conversation_key = e._data["component"]["conversationKey"]
history = state_value["conversations_history"][
state_value["conversation_id"]]
history = [item for item in history if item["key"] != conversation_key]
state_value["conversations_history"][
state_value["conversation_id"]] = history
return gr.update(items=history if len(history) >
0 else DEFAULT_CONVERSATIONS_HISTORY), gr.update(
value=state_value)
@staticmethod
def edit_message(state_value, e: gr.EventData):
conversation_key = e._data["component"]["conversationKey"]
history = state_value["conversations_history"][
state_value["conversation_id"]]
index = -1
for i, conversation in enumerate(history):
if conversation["key"] == conversation_key:
index = i
break
if index == -1:
return gr.skip()
state_value["editing_message_index"] = index
text = ''
if isinstance(history[index]["content"], str):
text = history[index]["content"]
else:
text = history[index]["content"]["text"]
return gr.update(value=text), gr.update(value=state_value)
@staticmethod
def confirm_edit_message(edit_textarea_value, state_value):
history = state_value["conversations_history"][
state_value["conversation_id"]]
message = history[state_value["editing_message_index"]]
if isinstance(message["content"], str):
message["content"] = edit_textarea_value
else:
message["content"]["text"] = edit_textarea_value
return gr.update(items=history), gr.update(value=state_value)
@staticmethod
def select_suggestion(sender_value, e: gr.EventData):
return gr.update(value=sender_value[:-1] + e._data["payload"][0])
@staticmethod
def new_chat(state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversation_id"] = ""
# 清空上传的图片(修复新对话图片泄露bug)
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
return gr.update(active_key=state_value["conversation_id"]), gr.update(
items=DEFAULT_CONVERSATIONS_HISTORY), gr.update(value=state_value)
@staticmethod
def select_conversation(state_value, e: gr.EventData):
active_key = e._data["payload"][0]
if state_value["conversation_id"] == active_key or (
active_key not in state_value["conversations_history"]):
return gr.skip()
state_value["conversation_id"] = active_key
# 切换对话时清空上传的图片(避免图片泄露到其他对话)
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
return gr.update(active_key=active_key), gr.update(
items=state_value["conversations_history"][active_key]), gr.update(
value=state_value)
@staticmethod
def click_conversation_menu(state_value, e: gr.EventData):
conversation_id = e._data["payload"][0]["key"]
operation = e._data["payload"][1]["key"]
if operation == "delete":
del state_value["conversations_history"][conversation_id]
state_value["conversations"] = [
item for item in state_value["conversations"]
if item["key"] != conversation_id
]
if state_value["conversation_id"] == conversation_id:
state_value["conversation_id"] = ""
# 删除当前对话时清空上传的图片
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
return gr.update(
items=state_value["conversations"],
active_key=state_value["conversation_id"]), gr.update(
items=DEFAULT_CONVERSATIONS_HISTORY), gr.update(
value=state_value)
else:
return gr.update(
items=state_value["conversations"]), gr.skip(), gr.update(
value=state_value)
return gr.skip()
@staticmethod
def clear_conversation_history(state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversations_history"][
state_value["conversation_id"]] = []
# 清空对话历史时也清空上传的图片
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
return gr.update(items=DEFAULT_CONVERSATIONS_HISTORY), gr.update(
value=state_value)
@staticmethod
def close_modal():
return gr.update(open=False)
@staticmethod
def open_modal():
return gr.update(open=True)
@staticmethod
def update_browser_state(state_value):
return gr.update(value=dict(
conversations=state_value["conversations"],
conversations_history=state_value["conversations_history"]))
@staticmethod
def apply_browser_state(browser_state_value, state_value):
state_value["conversations"] = browser_state_value["conversations"]
state_value["conversations_history"] = browser_state_value[
"conversations_history"]
return gr.update(
items=browser_state_value["conversations"]), gr.update(
value=state_value)
@staticmethod
def handle_image_upload(files, state_value):
"""处理图片上传 - 支持拖拽和粘贴功能"""
logger.info(f"handle_image_upload called with files: {files}, type: {type(files)}")
if not files:
# 没有文件时重置为默认状态
logger.info("No files provided, resetting to default state")
return (
gr.update(value=state_value),
gr.update(count=0, elem_style=dict(display="block")), # 左侧绿色指示器显示0
gr.update(elem_style=dict(display="none")), # 隐藏垃圾桶按钮
)
# 显示上传中状态
logger.info("Upload in progress...")
try:
# 处理上传的文件
uploaded_images = []
image_file_paths = []
# 确保files是列表格式
if not isinstance(files, list):
files = [files] if files else []
for i, file_info in enumerate(files):
logger.info(f"Processing file {i}: {file_info}, type: {type(file_info)}")
file_path = None
if isinstance(file_info, dict):
# 如果是文件信息字典(Gradio上传格式)
file_path = file_info.get('name') or file_info.get('path')
logger.info(f"Extracted path from dict: {file_path}")
elif isinstance(file_info, str):
# 如果直接是文件路径
file_path = file_info
logger.info(f"Direct file path: {file_path}")
elif hasattr(file_info, 'name') and hasattr(file_info, 'read'):
# 如果是文件对象(拖拽/粘贴可能产生)
logger.info(f"File object detected: {file_info.name if hasattr(file_info, 'name') else 'unnamed'}")
# 对于文件对象,我们需要特殊处理
try:
if hasattr(file_info, 'name'):
file_path = file_info.name
else:
# 创建临时文件名
import tempfile
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file:
if hasattr(file_info, 'read'):
tmp_file.write(file_info.read())
file_path = tmp_file.name
logger.info(f"Created temporary file: {file_path}")
except Exception as file_error:
logger.error(f"Error processing file object: {str(file_error)}")
continue
else:
logger.warning(f"Unknown file format: {type(file_info)}")
continue
if file_path:
try:
# 保存文件路径
image_file_paths.append(file_path)
logger.info(f"Added to image_file_paths: {file_path}")
# 使用PIL加载图片
image = Image.open(file_path)
logger.info(f"Loaded image with size: {image.size} (原始尺寸,不进行缩放)")
# 保持原始图片尺寸,不进行任何缩放处理
uploaded_images.append(image)
except Exception as img_error:
logger.error(f"Error processing image {file_path}: {str(img_error)}")
continue
# 替换而不是追加图片(修复累积bug)
state_value["uploaded_images"] = uploaded_images
state_value["image_file_paths"] = image_file_paths
logger.info(f"Successfully uploaded {len(uploaded_images)} images via drag/paste/upload")
# 显示状态指示器,显示图片数量
return (
gr.update(value=state_value),
gr.update(count=len(uploaded_images), elem_style=dict(display="block")), # 左侧绿色指示器
gr.update(elem_style=dict(display="block")), # 显示垃圾桶按钮
)
except Exception as e:
logger.error(f"Error handling image upload: {str(e)}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return (
gr.update(value=state_value),
gr.update(count=0, elem_style=dict(display="block")), # 左侧绿色指示器显示0
gr.update(elem_style=dict(display="none")), # 隐藏垃圾桶按钮
)
@staticmethod
def clear_images(state_value):
"""清空上传的图片"""
state_value["uploaded_images"] = []
state_value["image_file_paths"] = []
logger.info("Cleared all uploaded images")
return (
gr.update(value=state_value),
gr.update(count=0, elem_style=dict(display="block")), # 左侧绿色指示器显示0
gr.update(elem_style=dict(display="none")), # 隐藏垃圾桶按钮
gr.update(value=None), # 清空图片上传组件
)
css = """
.gradio-container {
padding: 0 !important;
}
.gradio-container > main.fillable {
padding: 0 !important;
}
#chatbot {
height: calc(100vh - 21px - 16px);
}
#chatbot .chatbot-conversations {
height: 100%;
background-color: var(--ms-gr-ant-color-bg-layout);
}
#chatbot .chatbot-conversations .chatbot-conversations-list {
padding-left: 0;
padding-right: 0;
}
#chatbot .chatbot-chat {
padding: 32px;
height: 100%;
}
@media (max-width: 768px) {
#chatbot .chatbot-chat {
padding: 0;
}
}
#chatbot .chatbot-chat .chatbot-chat-messages {
flex: 1;
}
#chatbot .chatbot-chat .chatbot-chat-messages .chatbot-chat-message .chatbot-chat-message-footer {
visibility: hidden;
opacity: 0;
transition: opacity 0.2s;
}
#chatbot .chatbot-chat .chatbot-chat-message:last-child .chatbot-chat-message-footer {
visibility: visible;
opacity: 1;
}
#chatbot .chatbot-chat .chatbot-chat-message:hover .chatbot-chat-message-footer {
visibility: visible;
opacity: 1;
}
/* Thinking区域样式 */
.thinking-content .ant-collapse {
background: linear-gradient(135deg, #f8f9fc 0%, #f2f5f8 100%);
border: 1px solid #e1e8ed;
border-radius: 8px;
margin-bottom: 12px;
}
.thinking-content .ant-collapse > .ant-collapse-item > .ant-collapse-header {
padding: 8px 12px;
font-size: 13px;
color: #5a6c7d;
font-weight: 500;
}
.thinking-content .ant-collapse-content > .ant-collapse-content-box {
padding: 12px;
background: #fafbfc;
border-radius: 0 0 6px 6px;
font-size: 13px;
color: #667788;
line-height: 1.5;
white-space: pre-wrap;
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace;
}
.thinking-content .ant-collapse-content-box .markdown-body {
font-size: 13px;
line-height: 1.5;
color: #667788;
}
.thinking-content .ant-collapse-content-box pre {
background: #f6f8fa;
padding: 8px;
border-radius: 4px;
overflow: auto;
}
.thinking-content .ant-collapse-content-box h1,
.thinking-content .ant-collapse-content-box h2,
.thinking-content .ant-collapse-content-box h3,
.thinking-content .ant-collapse-content-box h4,
.thinking-content .ant-collapse-content-box h5,
.thinking-content .ant-collapse-content-box h6 {
margin-top: 16px;
margin-bottom: 8px;
font-weight: 600;
}
.thinking-content .ant-collapse-content-box ul,
.thinking-content .ant-collapse-content-box ol {
margin: 8px 0;
padding-left: 20px;
}
.thinking-content .ant-collapse-content-box li {
margin: 4px 0;
}
.thinking-content .ant-collapse-content-box code {
background: #f1f3f4;
padding: 2px 4px;
border-radius: 3px;
font-size: 85%;
}
/* 图片预览和展示样式 */
.image-preview-container {
background: #fafafa;
border: 1px solid #d9d9d9;
border-radius: 8px;
padding: 12px;
margin-bottom: 12px;
}
.image-gallery img {
transition: all 0.2s ease;
border-radius: 4px;
}
.image-gallery img:hover {
transform: scale(1.05);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);
z-index: 10;
position: relative;
}
.image-thumbnail {
position: relative;
display: inline-block;
margin: 4px;
border-radius: 6px;
overflow: hidden;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
transition: all 0.2s ease;
}
.image-thumbnail:hover {
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.2);
transform: translateY(-2px);
}
.image-upload-preview {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border: 2px dashed #d9d9d9;
border-radius: 8px;
padding: 16px;
margin-bottom: 16px;
text-align: center;
transition: all 0.3s ease;
}
.image-upload-preview.has-images {
border-style: solid;
border-color: #6A57FF;
background: linear-gradient(135deg, #f6f9fc 0%, #f0f4f8 100%);
}
/* 拖拽区域样式 */
.drop-zone {
position: relative;
transition: all 0.3s ease;
}
.drop-zone.drag-over {
background: linear-gradient(135deg, #e6f7ff 0%, #d6f7ff 100%);
border: 2px dashed #1890ff;
border-radius: 8px;
}
.drop-zone.drag-over::before {
content: "释放以上传图片";
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background: rgba(24, 144, 255, 0.9);
color: white;
padding: 12px 24px;
border-radius: 6px;
font-size: 16px;
font-weight: 500;
z-index: 1000;
pointer-events: none;
}
/* 响应式图片展示 */
@media (max-width: 768px) {
.image-gallery img {
width: 80px !important;
height: 60px !important;
}
.image-thumbnail {
width: 80px;
height: 60px;
}
}
/* 图片加载动画 */
@keyframes imageLoad {
from { opacity: 0; transform: scale(0.8); }
to { opacity: 1; transform: scale(1); }
}
.image-gallery img {
animation: imageLoad 0.3s ease;
}
/* 粘贴提示样式 */
.paste-hint {
position: fixed;
top: 20px;
right: 20px;
background: rgba(24, 144, 255, 0.9);
color: white;
padding: 8px 16px;
border-radius: 6px;
font-size: 14px;
z-index: 1001;
opacity: 0;
transform: translateY(-10px);
transition: all 0.3s ease;
}
.paste-hint.show {
opacity: 1;
transform: translateY(0);
}
"""
# 添加JavaScript代码来处理拖拽和粘贴
drag_and_paste_js = """
<script>
(function() {
let isInitialized = false;
function initializeDragAndPaste() {
if (isInitialized) return;
isInitialized = true;
console.log('Initializing drag and paste functionality...');
// 创建粘贴提示元素
const pasteHint = document.createElement('div');
pasteHint.className = 'paste-hint';
pasteHint.textContent = '检测到剪贴板中的图片,按 Ctrl+V 粘贴';
document.body.appendChild(pasteHint);
// 获取聊天容器作为拖拽区域
const chatContainer = document.querySelector('#chatbot .chatbot-chat') || document.body;
// 防止默认的拖拽行为
['dragenter', 'dragover', 'dragleave', 'drop'].forEach(eventName => {
chatContainer.addEventListener(eventName, preventDefaults, false);
document.body.addEventListener(eventName, preventDefaults, false);
});
function preventDefaults(e) {
e.preventDefault();
e.stopPropagation();
}
// 拖拽进入
['dragenter', 'dragover'].forEach(eventName => {
chatContainer.addEventListener(eventName, highlight, false);
});
// 拖拽离开
['dragleave', 'drop'].forEach(eventName => {
chatContainer.addEventListener(eventName, unhighlight, false);
});
function highlight(e) {
if (e.dataTransfer.types.includes('Files')) {
chatContainer.classList.add('drop-zone', 'drag-over');
}
}
function unhighlight(e) {
chatContainer.classList.remove('drop-zone', 'drag-over');
}
// 处理文件放置
chatContainer.addEventListener('drop', handleDrop, false);
function handleDrop(e) {
const dt = e.dataTransfer;
const files = dt.files;
if (files.length > 0) {
handleFileUpload(Array.from(files));
}
}
// 处理粘贴事件
document.addEventListener('paste', handlePaste, false);
function handlePaste(e) {
const items = e.clipboardData.items;
const imageFiles = [];
for (let i = 0; i < items.length; i++) {
if (items[i].type.indexOf('image') === 0) {
const file = items[i].getAsFile();
if (file) {
imageFiles.push(file);
}
}
}
if (imageFiles.length > 0) {
e.preventDefault();
handleFileUpload(imageFiles);
showPasteSuccess();
}
}
// 显示粘贴成功提示
function showPasteSuccess() {
pasteHint.textContent = '图片粘贴成功!';
pasteHint.classList.add('show');
setTimeout(() => {
pasteHint.classList.remove('show');
}, 2000);
}
// 处理文件上传
function handleFileUpload(files) {
console.log('Processing files:', files);
// 过滤只保留图片文件
const imageFiles = files.filter(file => file.type.startsWith('image/'));
if (imageFiles.length === 0) {
console.log('No image files found');
return;
}
// 查找上传组件
const uploadInput = document.querySelector('input[type="file"][accept*="image"]');
if (!uploadInput) {
console.error('Upload input not found');
return;
}
try {
// 创建新的文件列表
const dt = new DataTransfer();
imageFiles.forEach(file => {
dt.items.add(file);
});
// 设置文件到上传组件
uploadInput.files = dt.files;
// 触发 change 事件
const changeEvent = new Event('change', { bubbles: true });
uploadInput.dispatchEvent(changeEvent);
console.log(`Successfully uploaded ${imageFiles.length} image(s)`);
// 显示成功提示
showUploadSuccess(imageFiles.length);
} catch (error) {
console.error('Error uploading files:', error);
}
}
// 显示上传成功提示
function showUploadSuccess(count) {
pasteHint.textContent = `成功上传 ${count} 张图片!`;
pasteHint.classList.add('show');
setTimeout(() => {
pasteHint.classList.remove('show');
}, 2000);
}
// 监听剪贴板变化(可选功能)
document.addEventListener('keydown', function(e) {
if (e.ctrlKey && e.key === 'v') {
// 检查是否聚焦在输入框上
const activeElement = document.activeElement;
const isInInputArea = activeElement && (
activeElement.tagName === 'TEXTAREA' ||
activeElement.tagName === 'INPUT' ||
activeElement.contentEditable === 'true'
);
if (isInInputArea) {
// 短暂显示提示
setTimeout(() => {
if (navigator.clipboard && navigator.clipboard.read) {
navigator.clipboard.read().then(items => {
const hasImage = items.some(item =>
item.types.some(type => type.startsWith('image/'))
);
if (hasImage) {
pasteHint.textContent = '检测到图片,正在处理...';
pasteHint.classList.add('show');
setTimeout(() => {
pasteHint.classList.remove('show');
}, 1500);
}
}).catch(() => {
// 忽略权限错误
});
}
}, 100);
}
}
});
console.log('Drag and paste functionality initialized successfully');
}
// 初始化函数
function init() {
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', initializeDragAndPaste);
} else {
initializeDragAndPaste();
}
}
// 如果Gradio还没有完全加载,等待一下
if (window.gradio && window.gradio.mount) {
init();
} else {
// 等待Gradio加载
setTimeout(init, 1000);
}
// 也监听window load事件作为备选
window.addEventListener('load', initializeDragAndPaste);
})();
</script>
"""
def logo():
with antd.Typography.Title(level=1,
elem_style=dict(fontSize=24,
padding=8,
margin=0)):
with antd.Flex(align="center", gap="small", justify="center"):
antd.Image(logo_img,
preview=False,
alt="logo",
width=24,
height=24)
ms.Span("dots.vlm1.inst")
with gr.Blocks(css=css, fill_width=True, head=drag_and_paste_js) as demo:
state = gr.State({
"conversations_history": {},
"conversations": [],
"conversation_id": "",
"editing_message_index": -1,
"uploaded_images": [], # 存储当前上传的图片
"image_file_paths": [], # 存储图片文件路径用于预览
})
with ms.Application(), antdx.XProvider(
theme=DEFAULT_THEME, locale=DEFAULT_LOCALE), ms.AutoLoading():
with antd.Row(gutter=[20, 20], wrap=False, elem_id="chatbot"):
# Left Column
with antd.Col(md=dict(flex="0 0 260px", span=24, order=0),
span=0,
order=1,
elem_classes="chatbot-conversations",
elem_style=dict(
maxWidth="260px",
minWidth="260px",
overflow="hidden")):
with antd.Flex(vertical=True,
gap="small",
elem_style=dict(height="100%", width="100%", minWidth="0")):
# Logo
logo()
# New Conversation Button
with antd.Button(value=None,
color="primary",
variant="filled",
block=True, elem_style=dict(maxWidth="100%")) as add_conversation_btn:
ms.Text(get_text("New Conversation", "新建对话"))
with ms.Slot("icon"):
antd.Icon("PlusOutlined")
# Conversations List
with antdx.Conversations(
elem_classes="chatbot-conversations-list",
elem_style=dict(
width="100%",
minWidth="0",
overflow="hidden",
flex="1"
)
) as conversations:
with ms.Slot('menu.items'):
with antd.Menu.Item(
label="Delete", key="delete", danger=True
) as conversation_delete_menu_item:
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
# Right Column
with antd.Col(flex=1, elem_style=dict(height="100%")):
with antd.Flex(vertical=True,
gap="middle",
elem_classes="chatbot-chat"):
# Chatbot
with antdx.Bubble.List(
items=DEFAULT_CONVERSATIONS_HISTORY,
elem_classes="chatbot-chat-messages") as chatbot:
# Define Chatbot Roles
with ms.Slot("roles"):
# Placeholder Role
with antdx.Bubble.List.Role(
role="placeholder",
styles=dict(content=dict(width="100%")),
variant="borderless"):
with ms.Slot("messageRender"):
with antd.Space(
direction="vertical",
size=16,
elem_style=dict(width="100%")):
with antdx.Welcome(
styles=dict(icon=dict(
flexShrink=0)),
variant="borderless",
title=get_text(
"Hello, I'm dots.",
"你好,我是 dots."),
description=get_text(
"",
""),
):
with ms.Slot("icon"):
antd.Image(logo_img,
preview=False)
# User Role
with antdx.Bubble.List.Role(
role="user",
placement="end",
elem_classes="chatbot-chat-message",
class_names=dict(
footer="chatbot-chat-message-footer"),
styles=dict(content=dict(
maxWidth="100%",
overflow='auto',
))):
with ms.Slot(
"messageRender",
params_mapping="""(content) => {
// 检查多种图片存储格式
let imageCount = 0;
let textContent = '';
let imagesBase64 = [];
if (typeof content === 'object') {
// 新格式:检查 images_count
if (content.images_count && content.images_count > 0) {
imageCount = content.images_count;
textContent = content.text || '';
imagesBase64 = content.images_base64 || [];
}
// 旧格式:检查 images 数组
else if (content.images && content.images.length > 0) {
imageCount = content.images.length;
textContent = content.text || '';
imagesBase64 = content.images || [];
}
// 纯文本格式
else {
textContent = content.text || content;
}
} else {
// 字符串格式
textContent = content;
}
if (imageCount > 0 && imagesBase64.length > 0) {
const imageHtml = imagesBase64.map((base64, index) =>
`<img src="data:image/jpeg;base64,${base64}"
style="width: 120px; height: 90px; object-fit: cover; border-radius: 6px; margin: 4px; box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); cursor: pointer;"
alt="Image ${index + 1}" />`
).join('');
return {
image_info: {
style: { marginBottom: '8px', fontSize: '13px', color: '#666' },
value: `📷 包含 ${imageCount} 张图片`
},
text_content: {
value: textContent
},
image_gallery: {
value: `<div style="display: flex; flex-wrap: wrap; gap: 8px; margin-bottom: 12px;">${imageHtml}</div>`
}
};
}
return {
text_content: {
value: textContent
},
image_info: { style: { display: 'none' } },
image_gallery: { value: '' }
};
}"""):
# 图片信息提示
antd.Typography.Text(as_item="image_info", type="secondary")
# 图片展示区域 - 使用Markdown组件显示HTML
ms.Markdown(as_item="image_gallery")
# 文本内容
ms.Markdown(as_item="text_content")
with ms.Slot("footer",
params_mapping="""(bubble) => {
return {
copy_btn: {
copyable: { text: typeof bubble.content === 'string' ? bubble.content : bubble.content?.text, tooltips: false },
},
edit_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled },
delete_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled },
};
}"""):
with antd.Typography.Text(
copyable=dict(tooltips=False),
as_item="copy_btn"):
with ms.Slot("copyable.icon"):
with antd.Button(value=None,
size="small",
color="default",
variant="text"):
with ms.Slot("icon"):
antd.Icon("CopyOutlined")
with antd.Button(value=None,
size="small",
color="default",
variant="text"):
with ms.Slot("icon"):
antd.Icon("CheckOutlined")
with antd.Button(value=None,
size="small",
color="default",
variant="text",
as_item="edit_btn"
) as user_edit_btn:
with ms.Slot("icon"):
antd.Icon("EditOutlined")
with antd.Popconfirm(
title="Delete the message",
description=
"Are you sure to delete this message?",
ok_button_props=dict(danger=True),
as_item="delete_btn"
) as user_delete_popconfirm:
with antd.Button(value=None,
size="small",
color="default",
variant="text",
as_item="delete_btn"):
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
# Chatbot Role
with antdx.Bubble.List.Role(
role="assistant",
placement="start",
elem_classes="chatbot-chat-message",
class_names=dict(
footer="chatbot-chat-message-footer"),
styles=dict(content=dict(
maxWidth="100%", overflow='auto'))):
with ms.Slot("avatar"):
antd.Avatar(
os.path.join(os.path.dirname(__file__),
"rednote_hilab.png"))
with ms.Slot(
"messageRender",
params_mapping="""(content, bubble) => {
const has_error = bubble?.meta?.error
const thinking_content = bubble?.meta?.thinking_content || ""
const is_thinking = bubble?.meta?.is_thinking || false
const thinking_done = bubble?.meta?.thinking_done || false
const just_finished_thinking = bubble?.meta?.just_finished_thinking || false
// 改进的自动折叠逻辑:
// 1. 刚完成thinking且有回答内容时自动折叠
// 2. 考虑用户交互状态,避免频繁重置
const shouldAutoCollapse = just_finished_thinking && content && content.trim().length > 0
// 动态生成唯一key以触发组件重新渲染,但保持用户控制能力
let collapseKey = 'thinking'
let collapseProps = {}
if (shouldAutoCollapse) {
// 刚完成thinking且有内容时,设置为折叠状态
// 使用时间戳确保key的唯一性,触发折叠
collapseKey = 'thinking-auto-collapsed-' + Date.now()
collapseProps.active_key = [] // 强制折叠
} else if (thinking_done) {
// thinking完成但用户可能已经手动展开,使用稳定key
collapseKey = 'thinking-user-controlled'
// 不设置active_key,让用户控制
} else {
// thinking进行中,默认展开
collapseKey = 'thinking-active'
collapseProps.default_active_key = ['1']
}
return {
thinking_collapse_props: Object.assign({
key: collapseKey,
style: {
display: (thinking_content || is_thinking) ? 'block' : 'none',
marginBottom: thinking_content || is_thinking ? '12px' : '0'
}
}, collapseProps),
thinking_label: is_thinking ? '🤔 正在思考...' : '🤔 思考过程',
thinking_markdown: {
value: thinking_content || '思考中...'
},
answer: {
value: content
},
canceled: bubble.meta?.canceled ? undefined : { style: { display: 'none' } }
}
}"""):
# Thinking区域 - 可折叠 + Markdown 渲染
with antd.Collapse(
size='small',
ghost=True,
elem_classes="thinking-content",
as_item="thinking_collapse_props" # 动态控制所有属性
):
with antd.Collapse.Item(
as_item="thinking_label", # 动态 label 作为 header
key='1',
force_render=True # 确保即使折叠也预渲染内容(可选,提高性能)
):
ms.Markdown(as_item="thinking_markdown") # 动态 value,支持 Markdown 渲染
# 回答内容
ms.Markdown(
as_item="answer",
elem_classes="answer-content")
antd.Divider(as_item="canceled")
antd.Typography.Text(get_text(
"Chat completion paused.", "聊天已暂停。"),
as_item="canceled",
type="warning")
with ms.Slot("footer",
params_mapping="""(bubble) => {
if (bubble?.meta?.end) {
return {
copy_btn: {
copyable: { text: bubble.content, tooltips: false },
},
regenerate_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled },
delete_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled },
edit_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled },
};
}
return { actions_container: { style: { display: 'none' } } };
}"""):
with ms.Div(as_item="actions_container"):
with antd.Typography.Text(
copyable=dict(tooltips=False),
as_item="copy_btn"):
with ms.Slot("copyable.icon"):
with antd.Button(
value=None,
size="small",
color="default",
variant="text"):
with ms.Slot("icon"):
antd.Icon(
"CopyOutlined")
with antd.Button(
value=None,
size="small",
color="default",
variant="text"):
with ms.Slot("icon"):
antd.Icon(
"CheckOutlined")
with antd.Popconfirm(
title=get_text(
"Regenerate the message",
"重新生成消息"),
description=get_text(
"Regenerate the message will also delete all subsequent messages.",
"重新生成消息将会删除所有的后续消息。"),
ok_button_props=dict(
danger=True),
as_item="regenerate_btn"
) as chatbot_regenerate_popconfirm:
with antd.Button(
value=None,
size="small",
color="default",
variant="text",
as_item="regenerate_btn",
):
with ms.Slot("icon"):
antd.Icon("SyncOutlined")
with antd.Button(value=None,
size="small",
color="default",
variant="text",
as_item="edit_btn"
) as chatbot_edit_btn:
with ms.Slot("icon"):
antd.Icon("EditOutlined")
with antd.Popconfirm(
title=get_text("Delete the message", "删除消息"),
description=get_text(
"Are you sure to delete this message?",
"确定要删除这条消息吗?"),
ok_button_props=dict(
danger=True),
as_item="delete_btn"
) as chatbot_delete_popconfirm:
with antd.Button(
value=None,
size="small",
color="default",
variant="text",
as_item="delete_btn"):
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
# Sender
with antdx.Suggestion(
# onKeyDown Handler in Javascript
should_trigger="""(e, { onTrigger, onKeyDown }) => {
switch(e.key) {
case '/':
onTrigger()
break
case 'ArrowRight':
case 'ArrowLeft':
case 'ArrowUp':
case 'ArrowDown':
break;
default:
onTrigger(false)
}
onKeyDown(e)
}""") as suggestion:
with ms.Slot("children"):
with antdx.Sender(placeholder=get_text(
"Enter Prompt (Drag & Drop or Ctrl+V to paste images)",
"输入内容(可拖拽图片或 Ctrl+V 粘贴图片)"), ) as sender:
with ms.Slot("actions"):
# 停止生成按钮
with antd.Button(
type="text",
size="large",
visible=False, # 初始隐藏
elem_style=dict(
color="#ff4d4f", # 红色
border="none",
background="transparent"
)
) as stop_btn:
with ms.Slot("icon"):
antd.Icon("PauseCircleOutlined")
with ms.Slot("prefix"):
# Image Upload Button with Counter - 图片上传按钮
with antd.Space(size="small"):
with antd.Tooltip(title="点击上传图片", color="green"):
with antd.Upload(
accept="image/*",
multiple=True,
show_upload_list=False,
elem_style=dict(display="inline-block")
) as image_upload:
with antd.Badge(
count=0, # 默认显示0
size="small",
color="#52c41a", # 绿色
elem_style=dict(display="block") # 默认显示
) as green_image_indicator:
with antd.Button(
type="text",
size="large",
elem_style=dict(
color="#52c41a", # 绿色图标
border="none",
background="transparent"
)
):
with ms.Slot("icon"):
antd.Icon("PictureOutlined")
# Trash Button - 垃圾桶清理按钮
with antd.Tooltip(title="清除已上传的图片", color="red"):
with antd.Button(
type="text",
size="large",
elem_style=dict(
color="#ff4d4f", # 红色图标
border="none",
background="transparent",
display="none" # 默认隐藏,有图片时显示
)
) as trash_button:
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
# Clear Button - 清空对话历史按钮
with antd.Tooltip(title=get_text(
"Clear Conversation History",
"清空对话历史"), ):
with antd.Button(
value=None,
type="text") as clear_btn:
with ms.Slot("icon"):
antd.Icon("ClearOutlined")
# Modals
with antd.Modal(title=get_text("Edit Message", "编辑消息"),
open=False,
centered=True,
width="60%") as edit_modal:
edit_textarea = antd.Input.Textarea(auto_size=dict(minRows=2,
maxRows=6),
elem_style=dict(width="100%"))
# Events Handler
if save_history:
browser_state = gr.BrowserState(
{
"conversations_history": {},
"conversations": [],
},
storage_key="dots_chatbot_storage")
state.change(fn=Gradio_Events.update_browser_state,
inputs=[state],
outputs=[browser_state])
demo.load(fn=Gradio_Events.apply_browser_state,
inputs=[browser_state, state],
outputs=[conversations, state])
add_conversation_btn.click(fn=Gradio_Events.new_chat,
inputs=[state],
outputs=[conversations, chatbot, state])
conversations.active_change(fn=Gradio_Events.select_conversation,
inputs=[state],
outputs=[conversations, chatbot, state])
conversations.menu_click(fn=Gradio_Events.click_conversation_menu,
inputs=[state],
outputs=[conversations, chatbot, state])
clear_btn.click(fn=Gradio_Events.clear_conversation_history,
inputs=[state],
outputs=[chatbot, state])
suggestion.select(fn=Gradio_Events.select_suggestion,
inputs=[sender],
outputs=[sender])
gr.on(triggers=[user_edit_btn.click, chatbot_edit_btn.click],
fn=Gradio_Events.edit_message,
inputs=[state],
outputs=[edit_textarea, state]).then(fn=Gradio_Events.open_modal,
outputs=[edit_modal])
edit_modal.ok(fn=Gradio_Events.confirm_edit_message,
inputs=[edit_textarea, state],
outputs=[chatbot, state]).then(fn=Gradio_Events.close_modal,
outputs=[edit_modal])
edit_modal.cancel(fn=Gradio_Events.close_modal, outputs=[edit_modal])
gr.on(triggers=[
chatbot_delete_popconfirm.confirm, user_delete_popconfirm.confirm
],
fn=Gradio_Events.delete_message,
inputs=[state],
outputs=[chatbot, state])
regenerating_event = chatbot_regenerate_popconfirm.confirm(
fn=Gradio_Events.regenerate_message,
inputs=[state],
outputs=[sender, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state,
image_upload, green_image_indicator, trash_button, stop_btn])
# 图片上传事件
image_upload.change(fn=Gradio_Events.handle_image_upload,
inputs=[image_upload, state],
outputs=[state, green_image_indicator, trash_button])
# 清空图片事件 - 垃圾桶按钮
trash_button.click(fn=Gradio_Events.clear_images,
inputs=[state],
outputs=[state, green_image_indicator, trash_button, image_upload])
submit_event = sender.submit(fn=Gradio_Events.submit,
inputs=[sender, state],
outputs=[sender, clear_btn, conversation_delete_menu_item,
add_conversation_btn, conversations, chatbot, state,
image_upload, green_image_indicator, trash_button, stop_btn])
# 停止按钮点击事件
stop_btn.click(fn=None, cancels=[submit_event, regenerating_event])
stop_btn.click(fn=Gradio_Events.cancel,
inputs=[state],
outputs=[
sender, conversation_delete_menu_item, clear_btn,
conversations, add_conversation_btn, chatbot, state, stop_btn
])
sender.cancel(fn=None, cancels=[submit_event, regenerating_event])
sender.cancel(fn=Gradio_Events.cancel,
inputs=[state],
outputs=[
sender, conversation_delete_menu_item, clear_btn,
conversations, add_conversation_btn, chatbot, state, stop_btn
])
if __name__ == "__main__":
import sys
import argparse
parser = argparse.ArgumentParser(description="启动 Gradio Demo")
parser.add_argument("--port", type=int, default=7860, help="指定服务端口,默认为7960")
args = parser.parse_args()
demo.queue(default_concurrency_limit=200).launch(
ssr_mode=False,
max_threads=200,
server_port=args.port,
server_name="0.0.0.0"
) |