Spaces:
Sleeping
Sleeping
| import subprocess | |
| import os | |
| import sys | |
| import errno | |
| import shutil | |
| import yt_dlp | |
| from mega import Mega | |
| import datetime | |
| import unicodedata | |
| import torch | |
| import glob | |
| import gradio as gr | |
| import gdown | |
| import zipfile | |
| import traceback | |
| import json | |
| import mdx | |
| from mdx_processing_script import get_model_list,id_to_ptm,prepare_mdx,run_mdx | |
| import requests | |
| import wget | |
| import ffmpeg | |
| import hashlib | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| from unidecode import unidecode | |
| import re | |
| import time | |
| from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM | |
| from infer.modules.vc.pipeline import Pipeline | |
| VC = Pipeline | |
| from lib.infer_pack.models import ( | |
| SynthesizerTrnMs256NSFsid, | |
| SynthesizerTrnMs256NSFsid_nono, | |
| SynthesizerTrnMs768NSFsid, | |
| SynthesizerTrnMs768NSFsid_nono, | |
| ) | |
| from MDXNet import MDXNetDereverb | |
| from configs.config import Config | |
| from infer_uvr5 import _audio_pre_, _audio_pre_new | |
| from huggingface_hub import HfApi, list_models | |
| from huggingface_hub import login | |
| from i18n import I18nAuto | |
| i18n = I18nAuto() | |
| from bs4 import BeautifulSoup | |
| from sklearn.cluster import MiniBatchKMeans | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| config = Config() | |
| tmp = os.path.join(now_dir, "TEMP") | |
| shutil.rmtree(tmp, ignore_errors=True) | |
| os.environ["TEMP"] = tmp | |
| weight_root = os.getenv("weight_root") | |
| weight_uvr5_root = os.getenv("weight_uvr5_root") | |
| index_root = os.getenv("index_root") | |
| audio_root = "audios" | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| index_paths = [] | |
| global indexes_list | |
| indexes_list = [] | |
| audio_paths = [] | |
| for root, dirs, files in os.walk(index_root, topdown=False): | |
| for name in files: | |
| if name.endswith(".index") and "trained" not in name: | |
| index_paths.append("%s\\%s" % (root, name)) | |
| for root, dirs, files in os.walk(audio_root, topdown=False): | |
| for name in files: | |
| audio_paths.append("%s/%s" % (root, name)) | |
| uvr5_names = [] | |
| for name in os.listdir(weight_uvr5_root): | |
| if name.endswith(".pth") or "onnx" in name: | |
| uvr5_names.append(name.replace(".pth", "")) | |
| def calculate_md5(file_path): | |
| hash_md5 = hashlib.md5() | |
| with open(file_path, "rb") as f: | |
| for chunk in iter(lambda: f.read(4096), b""): | |
| hash_md5.update(chunk) | |
| return hash_md5.hexdigest() | |
| def format_title(title): | |
| formatted_title = re.sub(r'[^\w\s-]', '', title) | |
| formatted_title = formatted_title.replace(" ", "_") | |
| return formatted_title | |
| def silentremove(filename): | |
| try: | |
| os.remove(filename) | |
| except OSError as e: | |
| if e.errno != errno.ENOENT: | |
| raise | |
| def get_md5(temp_folder): | |
| for root, subfolders, files in os.walk(temp_folder): | |
| for file in files: | |
| if not file.startswith("G_") and not file.startswith("D_") and file.endswith(".pth") and not "_G_" in file and not "_D_" in file: | |
| md5_hash = calculate_md5(os.path.join(root, file)) | |
| return md5_hash | |
| return None | |
| def find_parent(search_dir, file_name): | |
| for dirpath, dirnames, filenames in os.walk(search_dir): | |
| if file_name in filenames: | |
| return os.path.abspath(dirpath) | |
| return None | |
| def find_folder_parent(search_dir, folder_name): | |
| for dirpath, dirnames, filenames in os.walk(search_dir): | |
| if folder_name in dirnames: | |
| return os.path.abspath(dirpath) | |
| return None | |
| def delete_large_files(directory_path, max_size_megabytes): | |
| for filename in os.listdir(directory_path): | |
| file_path = os.path.join(directory_path, filename) | |
| if os.path.isfile(file_path): | |
| size_in_bytes = os.path.getsize(file_path) | |
| size_in_megabytes = size_in_bytes / (1024 * 1024) # Convert bytes to megabytes | |
| if size_in_megabytes > max_size_megabytes: | |
| print("###################################") | |
| print(f"Deleting s*** {filename} (Size: {size_in_megabytes:.2f} MB)") | |
| os.remove(file_path) | |
| print("###################################") | |
| def download_from_url(url): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| zips_path = os.path.join(parent_path, 'zips') | |
| print(f"Limit download size in MB {os.getenv('MAX_DOWNLOAD_SIZE')}, duplicate the space for modify the limit") | |
| if url != '': | |
| print(i18n("Downloading the file: ") + f"{url}") | |
| if "drive.google.com" in url: | |
| if "file/d/" in url: | |
| file_id = url.split("file/d/")[1].split("/")[0] | |
| elif "id=" in url: | |
| file_id = url.split("id=")[1].split("&")[0] | |
| else: | |
| return None | |
| if file_id: | |
| os.chdir('./zips') | |
| result = subprocess.run(["gdown", f"https://drive.google.com/uc?id={file_id}", "--fuzzy"], capture_output=True, text=True, encoding='utf-8') | |
| if "Too many users have viewed or downloaded this file recently" in str(result.stderr): | |
| return "too much use" | |
| if "Cannot retrieve the public link of the file." in str(result.stderr): | |
| return "private link" | |
| print(result.stderr) | |
| elif "/blob/" in url: | |
| os.chdir('./zips') | |
| url = url.replace("blob", "resolve") | |
| response = requests.get(url) | |
| if response.status_code == 200: | |
| file_name = url.split('/')[-1] | |
| with open(os.path.join(zips_path, file_name), "wb") as newfile: | |
| newfile.write(response.content) | |
| else: | |
| os.chdir(parent_path) | |
| elif "mega.nz" in url: | |
| if "#!" in url: | |
| file_id = url.split("#!")[1].split("!")[0] | |
| elif "file/" in url: | |
| file_id = url.split("file/")[1].split("/")[0] | |
| else: | |
| return None | |
| if file_id: | |
| m = Mega() | |
| m.download_url(url, zips_path) | |
| elif "/tree/main" in url: | |
| response = requests.get(url) | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| temp_url = '' | |
| for link in soup.find_all('a', href=True): | |
| if link['href'].endswith('.zip'): | |
| temp_url = link['href'] | |
| break | |
| if temp_url: | |
| url = temp_url | |
| url = url.replace("blob", "resolve") | |
| if "huggingface.co" not in url: | |
| url = "https://huggingface.co" + url | |
| wget.download(url) | |
| else: | |
| print("No .zip file found on the page.") | |
| elif "cdn.discordapp.com" in url: | |
| file = requests.get(url) | |
| if file.status_code == 200: | |
| name = url.split('/') | |
| with open(os.path.join(zips_path, name[len(name)-1]), "wb") as newfile: | |
| newfile.write(file.content) | |
| else: | |
| return None | |
| elif "pixeldrain.com" in url: | |
| try: | |
| file_id = url.split("pixeldrain.com/u/")[1] | |
| os.chdir('./zips') | |
| print(file_id) | |
| response = requests.get(f"https://pixeldrain.com/api/file/{file_id}") | |
| if response.status_code == 200: | |
| file_name = response.headers.get("Content-Disposition").split('filename=')[-1].strip('";') | |
| if not os.path.exists(zips_path): | |
| os.makedirs(zips_path) | |
| with open(os.path.join(zips_path, file_name), "wb") as newfile: | |
| newfile.write(response.content) | |
| os.chdir(parent_path) | |
| return "downloaded" | |
| else: | |
| os.chdir(parent_path) | |
| return None | |
| except Exception as e: | |
| print(e) | |
| os.chdir(parent_path) | |
| return None | |
| else: | |
| os.chdir('./zips') | |
| wget.download(url) | |
| #os.chdir('./zips') | |
| delete_large_files(zips_path, int(os.getenv("MAX_DOWNLOAD_SIZE"))) | |
| os.chdir(parent_path) | |
| print(i18n("Full download")) | |
| return "downloaded" | |
| else: | |
| return None | |
| class error_message(Exception): | |
| def __init__(self, mensaje): | |
| self.mensaje = mensaje | |
| super().__init__(mensaje) | |
| def get_vc(sid, to_return_protect0, to_return_protect1): | |
| global n_spk, tgt_sr, net_g, vc, cpt, version | |
| if sid == "" or sid == []: | |
| global hubert_model | |
| if hubert_model is not None: | |
| print("clean_empty_cache") | |
| del net_g, n_spk, vc, hubert_model, tgt_sr | |
| hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| if_f0 = cpt.get("f0", 1) | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g, cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| cpt = None | |
| return ( | |
| {"visible": False, "__type__": "update"}, | |
| {"visible": False, "__type__": "update"}, | |
| {"visible": False, "__type__": "update"}, | |
| ) | |
| person = "%s/%s" % (weight_root, sid) | |
| print("loading %s" % person) | |
| cpt = torch.load(person, map_location="cpu") | |
| tgt_sr = cpt["config"][-1] | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
| if_f0 = cpt.get("f0", 1) | |
| if if_f0 == 0: | |
| to_return_protect0 = to_return_protect1 = { | |
| "visible": False, | |
| "value": 0.5, | |
| "__type__": "update", | |
| } | |
| else: | |
| to_return_protect0 = { | |
| "visible": True, | |
| "value": to_return_protect0, | |
| "__type__": "update", | |
| } | |
| to_return_protect1 = { | |
| "visible": True, | |
| "value": to_return_protect1, | |
| "__type__": "update", | |
| } | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
| net_g.eval().to(config.device) | |
| if config.is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) | |
| n_spk = cpt["config"][-3] | |
| return ( | |
| {"visible": True, "maximum": n_spk, "__type__": "update"}, | |
| to_return_protect0, | |
| to_return_protect1, | |
| ) | |
| def load_downloaded_model(url): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| try: | |
| infos = [] | |
| logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768'] | |
| zips_path = os.path.join(parent_path, 'zips') | |
| unzips_path = os.path.join(parent_path, 'unzips') | |
| weights_path = os.path.join(parent_path, 'weights') | |
| logs_dir = "" | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(unzips_path): | |
| shutil.rmtree(unzips_path) | |
| os.mkdir(zips_path) | |
| os.mkdir(unzips_path) | |
| download_file = download_from_url(url) | |
| if not download_file: | |
| print(i18n("The file could not be downloaded.")) | |
| infos.append(i18n("The file could not be downloaded.")) | |
| yield "\n".join(infos) | |
| elif download_file == "downloaded": | |
| print(i18n("It has been downloaded successfully.")) | |
| infos.append(i18n("It has been downloaded successfully.")) | |
| yield "\n".join(infos) | |
| elif download_file == "too much use": | |
| raise Exception(i18n("Too many users have recently viewed or downloaded this file")) | |
| elif download_file == "private link": | |
| raise Exception(i18n("Cannot get file from this private link")) | |
| for filename in os.listdir(zips_path): | |
| if filename.endswith(".zip"): | |
| zipfile_path = os.path.join(zips_path,filename) | |
| print(i18n("Proceeding with the extraction...")) | |
| infos.append(i18n("Proceeding with the extraction...")) | |
| shutil.unpack_archive(zipfile_path, unzips_path, 'zip') | |
| model_name = os.path.basename(zipfile_path) | |
| logs_dir = os.path.join(parent_path,'logs', os.path.normpath(str(model_name).replace(".zip",""))) | |
| yield "\n".join(infos) | |
| else: | |
| print(i18n("Unzip error.")) | |
| infos.append(i18n("Unzip error.")) | |
| yield "\n".join(infos) | |
| index_file = False | |
| model_file = False | |
| D_file = False | |
| G_file = False | |
| for path, subdirs, files in os.walk(unzips_path): | |
| for item in files: | |
| item_path = os.path.join(path, item) | |
| if not 'G_' in item and not 'D_' in item and item.endswith('.pth'): | |
| model_file = True | |
| model_name = item.replace(".pth","") | |
| logs_dir = os.path.join(parent_path,'logs', model_name) | |
| if os.path.exists(logs_dir): | |
| shutil.rmtree(logs_dir) | |
| os.mkdir(logs_dir) | |
| if not os.path.exists(weights_path): | |
| os.mkdir(weights_path) | |
| if os.path.exists(os.path.join(weights_path, item)): | |
| os.remove(os.path.join(weights_path, item)) | |
| if os.path.exists(item_path): | |
| shutil.move(item_path, weights_path) | |
| if not model_file and not os.path.exists(logs_dir): | |
| os.mkdir(logs_dir) | |
| for path, subdirs, files in os.walk(unzips_path): | |
| for item in files: | |
| item_path = os.path.join(path, item) | |
| if item.startswith('added_') and item.endswith('.index'): | |
| index_file = True | |
| if os.path.exists(item_path): | |
| if os.path.exists(os.path.join(logs_dir, item)): | |
| os.remove(os.path.join(logs_dir, item)) | |
| shutil.move(item_path, logs_dir) | |
| if item.startswith('total_fea.npy') or item.startswith('events.'): | |
| if os.path.exists(item_path): | |
| if os.path.exists(os.path.join(logs_dir, item)): | |
| os.remove(os.path.join(logs_dir, item)) | |
| shutil.move(item_path, logs_dir) | |
| result = "" | |
| if model_file: | |
| if index_file: | |
| print(i18n("The model works for inference, and has the .index file.")) | |
| infos.append("\n" + i18n("The model works for inference, and has the .index file.")) | |
| yield "\n".join(infos) | |
| else: | |
| print(i18n("The model works for inference, but it doesn't have the .index file.")) | |
| infos.append("\n" + i18n("The model works for inference, but it doesn't have the .index file.")) | |
| yield "\n".join(infos) | |
| if not index_file and not model_file: | |
| print(i18n("No relevant file was found to upload.")) | |
| infos.append(i18n("No relevant file was found to upload.")) | |
| yield "\n".join(infos) | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(unzips_path): | |
| shutil.rmtree(unzips_path) | |
| os.chdir(parent_path) | |
| return result | |
| except Exception as e: | |
| os.chdir(parent_path) | |
| if "too much use" in str(e): | |
| print(i18n("Too many users have recently viewed or downloaded this file")) | |
| yield i18n("Too many users have recently viewed or downloaded this file") | |
| elif "private link" in str(e): | |
| print(i18n("Cannot get file from this private link")) | |
| yield i18n("Cannot get file from this private link") | |
| else: | |
| print(e) | |
| yield i18n("An error occurred downloading") | |
| finally: | |
| os.chdir(parent_path) | |
| def load_dowloaded_dataset(url): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| infos = [] | |
| try: | |
| zips_path = os.path.join(parent_path, 'zips') | |
| unzips_path = os.path.join(parent_path, 'unzips') | |
| datasets_path = os.path.join(parent_path, 'datasets') | |
| audio_extenions =['wav', 'mp3', 'flac', 'ogg', 'opus', | |
| 'm4a', 'mp4', 'aac', 'alac', 'wma', | |
| 'aiff', 'webm', 'ac3'] | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(unzips_path): | |
| shutil.rmtree(unzips_path) | |
| if not os.path.exists(datasets_path): | |
| os.mkdir(datasets_path) | |
| os.mkdir(zips_path) | |
| os.mkdir(unzips_path) | |
| download_file = download_from_url(url) | |
| if not download_file: | |
| print(i18n("An error occurred downloading")) | |
| infos.append(i18n("An error occurred downloading")) | |
| yield "\n".join(infos) | |
| raise Exception(i18n("An error occurred downloading")) | |
| elif download_file == "downloaded": | |
| print(i18n("It has been downloaded successfully.")) | |
| infos.append(i18n("It has been downloaded successfully.")) | |
| yield "\n".join(infos) | |
| elif download_file == "too much use": | |
| raise Exception(i18n("Too many users have recently viewed or downloaded this file")) | |
| elif download_file == "private link": | |
| raise Exception(i18n("Cannot get file from this private link")) | |
| zip_path = os.listdir(zips_path) | |
| foldername = "" | |
| for file in zip_path: | |
| if file.endswith('.zip'): | |
| file_path = os.path.join(zips_path, file) | |
| print("....") | |
| foldername = file.replace(".zip","").replace(" ","").replace("-","_") | |
| dataset_path = os.path.join(datasets_path, foldername) | |
| print(i18n("Proceeding with the extraction...")) | |
| infos.append(i18n("Proceeding with the extraction...")) | |
| yield "\n".join(infos) | |
| shutil.unpack_archive(file_path, unzips_path, 'zip') | |
| if os.path.exists(dataset_path): | |
| shutil.rmtree(dataset_path) | |
| os.mkdir(dataset_path) | |
| for root, subfolders, songs in os.walk(unzips_path): | |
| for song in songs: | |
| song_path = os.path.join(root, song) | |
| if song.endswith(tuple(audio_extenions)): | |
| formatted_song_name = format_title(os.path.splitext(song)[0]) | |
| extension = os.path.splitext(song)[1] | |
| new_song_path = os.path.join(dataset_path, f"{formatted_song_name}{extension}") | |
| shutil.move(song_path, new_song_path) | |
| else: | |
| print(i18n("Unzip error.")) | |
| infos.append(i18n("Unzip error.")) | |
| yield "\n".join(infos) | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(unzips_path): | |
| shutil.rmtree(unzips_path) | |
| print(i18n("The Dataset has been loaded successfully.")) | |
| infos.append(i18n("The Dataset has been loaded successfully.")) | |
| yield "\n".join(infos) | |
| except Exception as e: | |
| os.chdir(parent_path) | |
| if "too much use" in str(e): | |
| print(i18n("Too many users have recently viewed or downloaded this file")) | |
| yield i18n("Too many users have recently viewed or downloaded this file") | |
| elif "private link" in str(e): | |
| print(i18n("Cannot get file from this private link")) | |
| yield i18n("Cannot get file from this private link") | |
| else: | |
| print(e) | |
| yield i18n("An error occurred downloading") | |
| finally: | |
| os.chdir(parent_path) | |
| def save_model(modelname, save_action): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| zips_path = os.path.join(parent_path, 'zips') | |
| dst = os.path.join(zips_path,modelname) | |
| logs_path = os.path.join(parent_path, 'logs', modelname) | |
| weights_path = os.path.join(parent_path, 'weights', f"{modelname}.pth") | |
| save_folder = parent_path | |
| infos = [] | |
| try: | |
| if not os.path.exists(logs_path): | |
| raise Exception("No model found.") | |
| if not 'content' in parent_path: | |
| save_folder = os.path.join(parent_path, 'RVC_Backup') | |
| else: | |
| save_folder = '/content/drive/MyDrive/RVC_Backup' | |
| infos.append(i18n("Save model")) | |
| yield "\n".join(infos) | |
| if not os.path.exists(save_folder): | |
| os.mkdir(save_folder) | |
| if not os.path.exists(os.path.join(save_folder, 'ManualTrainingBackup')): | |
| os.mkdir(os.path.join(save_folder, 'ManualTrainingBackup')) | |
| if not os.path.exists(os.path.join(save_folder, 'Finished')): | |
| os.mkdir(os.path.join(save_folder, 'Finished')) | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| os.mkdir(zips_path) | |
| added_file = glob.glob(os.path.join(logs_path, "added_*.index")) | |
| d_file = glob.glob(os.path.join(logs_path, "D_*.pth")) | |
| g_file = glob.glob(os.path.join(logs_path, "G_*.pth")) | |
| if save_action == i18n("Choose the method"): | |
| raise Exception("No method choosen.") | |
| if save_action == i18n("Save all"): | |
| print(i18n("Save all")) | |
| save_folder = os.path.join(save_folder, 'ManualTrainingBackup') | |
| shutil.copytree(logs_path, dst) | |
| else: | |
| if not os.path.exists(dst): | |
| os.mkdir(dst) | |
| if save_action == i18n("Save D and G"): | |
| print(i18n("Save D and G")) | |
| save_folder = os.path.join(save_folder, 'ManualTrainingBackup') | |
| if len(d_file) > 0: | |
| shutil.copy(d_file[0], dst) | |
| if len(g_file) > 0: | |
| shutil.copy(g_file[0], dst) | |
| if len(added_file) > 0: | |
| shutil.copy(added_file[0], dst) | |
| else: | |
| infos.append(i18n("Saved without index...")) | |
| if save_action == i18n("Save voice"): | |
| print(i18n("Save voice")) | |
| save_folder = os.path.join(save_folder, 'Finished') | |
| if len(added_file) > 0: | |
| shutil.copy(added_file[0], dst) | |
| else: | |
| infos.append(i18n("Saved without index...")) | |
| yield "\n".join(infos) | |
| if not os.path.exists(weights_path): | |
| infos.append(i18n("Saved without inference model...")) | |
| else: | |
| shutil.copy(weights_path, dst) | |
| yield "\n".join(infos) | |
| infos.append("\n" + i18n("This may take a few minutes, please wait...")) | |
| yield "\n".join(infos) | |
| shutil.make_archive(os.path.join(zips_path,f"{modelname}"), 'zip', zips_path) | |
| shutil.move(os.path.join(zips_path,f"{modelname}.zip"), os.path.join(save_folder, f'{modelname}.zip')) | |
| shutil.rmtree(zips_path) | |
| infos.append("\n" + i18n("Model saved successfully")) | |
| yield "\n".join(infos) | |
| except Exception as e: | |
| print(e) | |
| if "No model found." in str(e): | |
| infos.append(i18n("The model you want to save does not exist, be sure to enter the correct name.")) | |
| else: | |
| infos.append(i18n("An error occurred saving the model")) | |
| yield "\n".join(infos) | |
| def load_downloaded_backup(url): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| try: | |
| infos = [] | |
| logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768'] | |
| zips_path = os.path.join(parent_path, 'zips') | |
| unzips_path = os.path.join(parent_path, 'unzips') | |
| weights_path = os.path.join(parent_path, 'weights') | |
| logs_dir = os.path.join(parent_path, 'logs') | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(unzips_path): | |
| shutil.rmtree(unzips_path) | |
| os.mkdir(zips_path) | |
| os.mkdir(unzips_path) | |
| download_file = download_from_url(url) | |
| if not download_file: | |
| print(i18n("The file could not be downloaded.")) | |
| infos.append(i18n("The file could not be downloaded.")) | |
| yield "\n".join(infos) | |
| elif download_file == "downloaded": | |
| print(i18n("It has been downloaded successfully.")) | |
| infos.append(i18n("It has been downloaded successfully.")) | |
| yield "\n".join(infos) | |
| elif download_file == "too much use": | |
| raise Exception(i18n("Too many users have recently viewed or downloaded this file")) | |
| elif download_file == "private link": | |
| raise Exception(i18n("Cannot get file from this private link")) | |
| for filename in os.listdir(zips_path): | |
| if filename.endswith(".zip"): | |
| zipfile_path = os.path.join(zips_path,filename) | |
| zip_dir_name = os.path.splitext(filename)[0] | |
| unzip_dir = unzips_path | |
| print(i18n("Proceeding with the extraction...")) | |
| infos.append(i18n("Proceeding with the extraction...")) | |
| shutil.unpack_archive(zipfile_path, unzip_dir, 'zip') | |
| if os.path.exists(os.path.join(unzip_dir, zip_dir_name)): | |
| shutil.move(os.path.join(unzip_dir, zip_dir_name), logs_dir) | |
| else: | |
| new_folder_path = os.path.join(logs_dir, zip_dir_name) | |
| os.mkdir(new_folder_path) | |
| for item_name in os.listdir(unzip_dir): | |
| item_path = os.path.join(unzip_dir, item_name) | |
| if os.path.isfile(item_path): | |
| shutil.move(item_path, new_folder_path) | |
| elif os.path.isdir(item_path): | |
| shutil.move(item_path, new_folder_path) | |
| yield "\n".join(infos) | |
| else: | |
| print(i18n("Unzip error.")) | |
| infos.append(i18n("Unzip error.")) | |
| yield "\n".join(infos) | |
| result = "" | |
| for filename in os.listdir(unzips_path): | |
| if filename.endswith(".zip"): | |
| silentremove(filename) | |
| if os.path.exists(zips_path): | |
| shutil.rmtree(zips_path) | |
| if os.path.exists(os.path.join(parent_path, 'unzips')): | |
| shutil.rmtree(os.path.join(parent_path, 'unzips')) | |
| print(i18n("The Backup has been uploaded successfully.")) | |
| infos.append("\n" + i18n("The Backup has been uploaded successfully.")) | |
| yield "\n".join(infos) | |
| os.chdir(parent_path) | |
| return result | |
| except Exception as e: | |
| os.chdir(parent_path) | |
| if "too much use" in str(e): | |
| print(i18n("Too many users have recently viewed or downloaded this file")) | |
| yield i18n("Too many users have recently viewed or downloaded this file") | |
| elif "private link" in str(e): | |
| print(i18n("Cannot get file from this private link")) | |
| yield i18n("Cannot get file from this private link") | |
| else: | |
| print(e) | |
| yield i18n("An error occurred downloading") | |
| finally: | |
| os.chdir(parent_path) | |
| def save_to_wav(record_button): | |
| if record_button is None: | |
| pass | |
| else: | |
| path_to_file=record_button | |
| new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' | |
| new_path='./audios/'+new_name | |
| shutil.move(path_to_file,new_path) | |
| return new_name | |
| def change_choices2(): | |
| audio_paths=[] | |
| for filename in os.listdir("./audios"): | |
| if filename.endswith(('wav', 'mp3', 'flac', 'ogg', 'opus', | |
| 'm4a', 'mp4', 'aac', 'alac', 'wma', | |
| 'aiff', 'webm', 'ac3')): | |
| audio_paths.append(os.path.join('./audios',filename).replace('\\', '/')) | |
| return {"choices": sorted(audio_paths), "__type__": "update"}, {"__type__": "update"} | |
| def uvr(input_url, output_path, model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0, architecture): | |
| carpeta_a_eliminar = "yt_downloads" | |
| if os.path.exists(carpeta_a_eliminar) and os.path.isdir(carpeta_a_eliminar): | |
| for archivo in os.listdir(carpeta_a_eliminar): | |
| ruta_archivo = os.path.join(carpeta_a_eliminar, archivo) | |
| if os.path.isfile(ruta_archivo): | |
| os.remove(ruta_archivo) | |
| elif os.path.isdir(ruta_archivo): | |
| shutil.rmtree(ruta_archivo) | |
| ydl_opts = { | |
| 'no-windows-filenames': True, | |
| 'restrict-filenames': True, | |
| 'extract_audio': True, | |
| 'format': 'bestaudio', | |
| 'quiet': True, | |
| 'no-warnings': True, | |
| } | |
| try: | |
| print(i18n("Downloading audio from the video...")) | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| info_dict = ydl.extract_info(input_url, download=False) | |
| formatted_title = format_title(info_dict.get('title', 'default_title')) | |
| formatted_outtmpl = output_path + '/' + formatted_title + '.wav' | |
| ydl_opts['outtmpl'] = formatted_outtmpl | |
| ydl = yt_dlp.YoutubeDL(ydl_opts) | |
| ydl.download([input_url]) | |
| print(i18n("Audio downloaded!")) | |
| except Exception as error: | |
| print(i18n("An error occurred:"), error) | |
| actual_directory = os.path.dirname(__file__) | |
| vocal_directory = os.path.join(actual_directory, save_root_vocal) | |
| instrumental_directory = os.path.join(actual_directory, save_root_ins) | |
| vocal_formatted = f"vocal_{formatted_title}.wav.reformatted.wav_10.wav" | |
| instrumental_formatted = f"instrument_{formatted_title}.wav.reformatted.wav_10.wav" | |
| vocal_audio_path = os.path.join(vocal_directory, vocal_formatted) | |
| instrumental_audio_path = os.path.join(instrumental_directory, instrumental_formatted) | |
| vocal_formatted_mdx = f"{formatted_title}_vocal_.wav" | |
| instrumental_formatted_mdx = f"{formatted_title}_instrument_.wav" | |
| vocal_audio_path_mdx = os.path.join(vocal_directory, vocal_formatted_mdx) | |
| instrumental_audio_path_mdx = os.path.join(instrumental_directory, instrumental_formatted_mdx) | |
| if architecture == "VR": | |
| try: | |
| print(i18n("Starting audio conversion... (This might take a moment)")) | |
| inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] | |
| usable_files = [os.path.join(inp_root, file) | |
| for file in os.listdir(inp_root) | |
| if file.endswith(tuple(sup_audioext))] | |
| pre_fun = MDXNetDereverb(15) if model_name == "onnx_dereverb_By_FoxJoy" else (_audio_pre_ if "DeEcho" not in model_name else _audio_pre_new)( | |
| agg=int(agg), | |
| model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), | |
| device=config.device, | |
| is_half=config.is_half, | |
| ) | |
| try: | |
| if paths != None: | |
| paths = [path.name for path in paths] | |
| else: | |
| paths = usable_files | |
| except: | |
| traceback.print_exc() | |
| paths = usable_files | |
| print(paths) | |
| for path in paths: | |
| inp_path = os.path.join(inp_root, path) | |
| need_reformat, done = 1, 0 | |
| try: | |
| info = ffmpeg.probe(inp_path, cmd="ffprobe") | |
| if info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100": | |
| need_reformat = 0 | |
| pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) | |
| done = 1 | |
| except: | |
| traceback.print_exc() | |
| if need_reformat: | |
| tmp_path = f"{tmp}/{os.path.basename(inp_path)}.reformatted.wav" | |
| os.system(f"ffmpeg -i {inp_path} -vn -acodec pcm_s16le -ac 2 -ar 44100 {tmp_path} -y") | |
| inp_path = tmp_path | |
| try: | |
| if not done: | |
| pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) | |
| print(f"{os.path.basename(inp_path)}->Success") | |
| except: | |
| print(f"{os.path.basename(inp_path)}->{traceback.format_exc()}") | |
| except: | |
| traceback.print_exc() | |
| finally: | |
| try: | |
| if model_name == "onnx_dereverb_By_FoxJoy": | |
| del pre_fun.pred.model | |
| del pre_fun.pred.model_ | |
| else: | |
| del pre_fun.model | |
| del pre_fun | |
| return i18n("Finished"), vocal_audio_path, instrumental_audio_path | |
| except: traceback.print_exc() | |
| if torch.cuda.is_available(): torch.cuda.empty_cache() | |
| elif architecture == "MDX": | |
| try: | |
| print(i18n("Starting audio conversion... (This might take a moment)")) | |
| inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] | |
| usable_files = [os.path.join(inp_root, file) | |
| for file in os.listdir(inp_root) | |
| if file.endswith(tuple(sup_audioext))] | |
| try: | |
| if paths != None: | |
| paths = [path.name for path in paths] | |
| else: | |
| paths = usable_files | |
| except: | |
| traceback.print_exc() | |
| paths = usable_files | |
| print(paths) | |
| invert=True | |
| denoise=True | |
| use_custom_parameter=True | |
| dim_f=2048 | |
| dim_t=256 | |
| n_fft=7680 | |
| use_custom_compensation=True | |
| compensation=1.025 | |
| suffix = "vocal_" #@param ["Vocals", "Drums", "Bass", "Other"]{allow-input: true} | |
| suffix_invert = "instrument_" #@param ["Instrumental", "Drumless", "Bassless", "Instruments"]{allow-input: true} | |
| print_settings = True # @param{type:"boolean"} | |
| onnx = id_to_ptm(model_name) | |
| compensation = compensation if use_custom_compensation or use_custom_parameter else None | |
| mdx_model = prepare_mdx(onnx,use_custom_parameter, dim_f, dim_t, n_fft, compensation=compensation) | |
| for path in paths: | |
| #inp_path = os.path.join(inp_root, path) | |
| suffix_naming = suffix if use_custom_parameter else None | |
| diff_suffix_naming = suffix_invert if use_custom_parameter else None | |
| run_mdx(onnx, mdx_model, path, format0, diff=invert,suffix=suffix_naming,diff_suffix=diff_suffix_naming,denoise=denoise) | |
| if print_settings: | |
| print() | |
| print('[MDX-Net_Colab settings used]') | |
| print(f'Model used: {onnx}') | |
| print(f'Model MD5: {mdx.MDX.get_hash(onnx)}') | |
| print(f'Model parameters:') | |
| print(f' -dim_f: {mdx_model.dim_f}') | |
| print(f' -dim_t: {mdx_model.dim_t}') | |
| print(f' -n_fft: {mdx_model.n_fft}') | |
| print(f' -compensation: {mdx_model.compensation}') | |
| print() | |
| print('[Input file]') | |
| print('filename(s): ') | |
| for filename in paths: | |
| print(f' -{filename}') | |
| print(f"{os.path.basename(filename)}->Success") | |
| except: | |
| traceback.print_exc() | |
| finally: | |
| try: | |
| del mdx_model | |
| return i18n("Finished"), vocal_audio_path_mdx, instrumental_audio_path_mdx | |
| except: traceback.print_exc() | |
| print("clean_empty_cache") | |
| if torch.cuda.is_available(): torch.cuda.empty_cache() | |
| sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus', | |
| 'm4a', 'mp4', 'aac', 'alac', 'wma', | |
| 'aiff', 'webm', 'ac3'} | |
| def load_downloaded_audio(url): | |
| parent_path = find_folder_parent(".", "pretrained_v2") | |
| try: | |
| infos = [] | |
| audios_path = os.path.join(parent_path, 'audios') | |
| zips_path = os.path.join(parent_path, 'zips') | |
| if not os.path.exists(audios_path): | |
| os.mkdir(audios_path) | |
| download_file = download_from_url(url) | |
| if not download_file: | |
| print(i18n("The file could not be downloaded.")) | |
| infos.append(i18n("The file could not be downloaded.")) | |
| yield "\n".join(infos) | |
| elif download_file == "downloaded": | |
| print(i18n("It has been downloaded successfully.")) | |
| infos.append(i18n("It has been downloaded successfully.")) | |
| yield "\n".join(infos) | |
| elif download_file == "too much use": | |
| raise Exception(i18n("Too many users have recently viewed or downloaded this file")) | |
| elif download_file == "private link": | |
| raise Exception(i18n("Cannot get file from this private link")) | |
| for filename in os.listdir(zips_path): | |
| item_path = os.path.join(zips_path, filename) | |
| if item_path.split('.')[-1] in sup_audioext: | |
| if os.path.exists(item_path): | |
| shutil.move(item_path, audios_path) | |
| result = "" | |
| print(i18n("Audio files have been moved to the 'audios' folder.")) | |
| infos.append(i18n("Audio files have been moved to the 'audios' folder.")) | |
| yield "\n".join(infos) | |
| os.chdir(parent_path) | |
| return result | |
| except Exception as e: | |
| os.chdir(parent_path) | |
| if "too much use" in str(e): | |
| print(i18n("Too many users have recently viewed or downloaded this file")) | |
| yield i18n("Too many users have recently viewed or downloaded this file") | |
| elif "private link" in str(e): | |
| print(i18n("Cannot get file from this private link")) | |
| yield i18n("Cannot get file from this private link") | |
| else: | |
| print(e) | |
| yield i18n("An error occurred downloading") | |
| finally: | |
| os.chdir(parent_path) | |
| class error_message(Exception): | |
| def __init__(self, mensaje): | |
| self.mensaje = mensaje | |
| super().__init__(mensaje) | |
| def get_vc(sid, to_return_protect0, to_return_protect1): | |
| global n_spk, tgt_sr, net_g, vc, cpt, version | |
| if sid == "" or sid == []: | |
| global hubert_model | |
| if hubert_model is not None: | |
| print("clean_empty_cache") | |
| del net_g, n_spk, vc, hubert_model, tgt_sr | |
| hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| if_f0 = cpt.get("f0", 1) | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g, cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| cpt = None | |
| return ( | |
| {"visible": False, "__type__": "update"}, | |
| {"visible": False, "__type__": "update"}, | |
| {"visible": False, "__type__": "update"}, | |
| ) | |
| person = "%s/%s" % (weight_root, sid) | |
| print("loading %s" % person) | |
| cpt = torch.load(person, map_location="cpu") | |
| tgt_sr = cpt["config"][-1] | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
| if_f0 = cpt.get("f0", 1) | |
| if if_f0 == 0: | |
| to_return_protect0 = to_return_protect1 = { | |
| "visible": False, | |
| "value": 0.5, | |
| "__type__": "update", | |
| } | |
| else: | |
| to_return_protect0 = { | |
| "visible": True, | |
| "value": to_return_protect0, | |
| "__type__": "update", | |
| } | |
| to_return_protect1 = { | |
| "visible": True, | |
| "value": to_return_protect1, | |
| "__type__": "update", | |
| } | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
| net_g.eval().to(config.device) | |
| if config.is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) | |
| n_spk = cpt["config"][-3] | |
| return ( | |
| {"visible": True, "maximum": n_spk, "__type__": "update"}, | |
| to_return_protect0, | |
| to_return_protect1, | |
| ) | |
| def update_model_choices(select_value): | |
| model_ids = get_model_list() | |
| model_ids_list = list(model_ids) | |
| if select_value == "VR": | |
| return {"choices": uvr5_names, "__type__": "update"} | |
| elif select_value == "MDX": | |
| return {"choices": model_ids_list, "__type__": "update"} | |
| def download_model(): | |
| gr.Markdown(value="# " + i18n("Download Model")) | |
| gr.Markdown(value=i18n("It is used to download your inference models.")) | |
| with gr.Row(): | |
| model_url=gr.Textbox(label=i18n("Url:")) | |
| with gr.Row(): | |
| download_model_status_bar=gr.Textbox(label=i18n("Status:")) | |
| with gr.Row(): | |
| download_button=gr.Button(i18n("Download")) | |
| download_button.click(fn=load_downloaded_model, inputs=[model_url], outputs=[download_model_status_bar]) | |
| def download_backup(): | |
| gr.Markdown(value="# " + i18n("Download Backup")) | |
| gr.Markdown(value=i18n("It is used to download your training backups.")) | |
| with gr.Row(): | |
| model_url=gr.Textbox(label=i18n("Url:")) | |
| with gr.Row(): | |
| download_model_status_bar=gr.Textbox(label=i18n("Status:")) | |
| with gr.Row(): | |
| download_button=gr.Button(i18n("Download")) | |
| download_button.click(fn=load_downloaded_backup, inputs=[model_url], outputs=[download_model_status_bar]) | |
| def update_dataset_list(name): | |
| new_datasets = [] | |
| for foldername in os.listdir("./datasets"): | |
| if "." not in foldername: | |
| new_datasets.append(os.path.join(find_folder_parent(".","pretrained"),"datasets",foldername)) | |
| return gr.Dropdown.update(choices=new_datasets) | |
| def download_dataset(trainset_dir4): | |
| gr.Markdown(value="# " + i18n("Download Dataset")) | |
| gr.Markdown(value=i18n("Download the dataset with the audios in a compatible format (.wav/.flac) to train your model.")) | |
| with gr.Row(): | |
| dataset_url=gr.Textbox(label=i18n("Url:")) | |
| with gr.Row(): | |
| load_dataset_status_bar=gr.Textbox(label=i18n("Status:")) | |
| with gr.Row(): | |
| load_dataset_button=gr.Button(i18n("Download")) | |
| load_dataset_button.click(fn=load_dowloaded_dataset, inputs=[dataset_url], outputs=[load_dataset_status_bar]) | |
| load_dataset_status_bar.change(update_dataset_list, dataset_url, trainset_dir4) | |
| def download_audio(): | |
| gr.Markdown(value="# " + i18n("Download Audio")) | |
| gr.Markdown(value=i18n("Download audios of any format for use in inference (recommended for mobile users).")) | |
| with gr.Row(): | |
| audio_url=gr.Textbox(label=i18n("Url:")) | |
| with gr.Row(): | |
| download_audio_status_bar=gr.Textbox(label=i18n("Status:")) | |
| with gr.Row(): | |
| download_button2=gr.Button(i18n("Download")) | |
| download_button2.click(fn=load_downloaded_audio, inputs=[audio_url], outputs=[download_audio_status_bar]) | |
| def youtube_separator(): | |
| gr.Markdown(value="# " + i18n("Separate YouTube tracks")) | |
| gr.Markdown(value=i18n("Download audio from a YouTube video and automatically separate the vocal and instrumental tracks")) | |
| with gr.Row(): | |
| input_url = gr.inputs.Textbox(label=i18n("Enter the YouTube link:")) | |
| output_path = gr.Textbox( | |
| label=i18n("Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):"), | |
| value=os.path.abspath(os.getcwd()).replace('\\', '/') + "/yt_downloads", | |
| visible=False, | |
| ) | |
| advanced_settings_checkbox = gr.Checkbox( | |
| value=False, | |
| label=i18n("Advanced Settings"), | |
| interactive=True, | |
| ) | |
| with gr.Row(label = i18n("Advanced Settings"), visible=False, variant='compact') as advanced_settings: | |
| with gr.Column(): | |
| model_select = gr.Radio( | |
| label=i18n("Model Architecture:"), | |
| choices=["VR", "MDX"], | |
| value="VR", | |
| interactive=True, | |
| ) | |
| model_choose = gr.Dropdown(label=i18n("Model: (Be aware that in some models the named vocal will be the instrumental)"), | |
| choices=uvr5_names, | |
| value="HP5_only_main_vocal" | |
| ) | |
| with gr.Row(): | |
| agg = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| step=1, | |
| label=i18n("Vocal Extraction Aggressive"), | |
| value=10, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| opt_vocal_root = gr.Textbox( | |
| label=i18n("Specify the output folder for vocals:"), value="audios", | |
| ) | |
| opt_ins_root = gr.Textbox( | |
| label=i18n("Specify the output folder for accompaniment:"), value="audio-others", | |
| ) | |
| dir_wav_input = gr.Textbox( | |
| label=i18n("Enter the path of the audio folder to be processed:"), | |
| value=((os.getcwd()).replace('\\', '/') + "/yt_downloads"), | |
| visible=False, | |
| ) | |
| format0 = gr.Radio( | |
| label=i18n("Export file format"), | |
| choices=["wav", "flac", "mp3", "m4a"], | |
| value="wav", | |
| visible=False, | |
| interactive=True, | |
| ) | |
| wav_inputs = gr.File( | |
| file_count="multiple", label=i18n("You can also input audio files in batches. Choose one of the two options. Priority is given to reading from the folder."), | |
| visible=False, | |
| ) | |
| model_select.change( | |
| fn=update_model_choices, | |
| inputs=model_select, | |
| outputs=model_choose, | |
| ) | |
| with gr.Row(): | |
| vc_output4 = gr.Textbox(label=i18n("Status:")) | |
| vc_output5 = gr.Audio(label=i18n("Vocal"), type='filepath') | |
| vc_output6 = gr.Audio(label=i18n("Instrumental"), type='filepath') | |
| with gr.Row(): | |
| but2 = gr.Button(i18n("Download and Separate")) | |
| but2.click( | |
| uvr, | |
| [ | |
| input_url, | |
| output_path, | |
| model_choose, | |
| dir_wav_input, | |
| opt_vocal_root, | |
| wav_inputs, | |
| opt_ins_root, | |
| agg, | |
| format0, | |
| model_select | |
| ], | |
| [vc_output4, vc_output5, vc_output6], | |
| ) | |
| def toggle_advanced_settings(checkbox): | |
| return {"visible": checkbox, "__type__": "update"} | |
| advanced_settings_checkbox.change( | |
| fn=toggle_advanced_settings, | |
| inputs=[advanced_settings_checkbox], | |
| outputs=[advanced_settings] | |
| ) | |
| def get_bark_voice(): | |
| mensaje = """ | |
| v2/en_speaker_0 English Male | |
| v2/en_speaker_1 English Male | |
| v2/en_speaker_2 English Male | |
| v2/en_speaker_3 English Male | |
| v2/en_speaker_4 English Male | |
| v2/en_speaker_5 English Male | |
| v2/en_speaker_6 English Male | |
| v2/en_speaker_7 English Male | |
| v2/en_speaker_8 English Male | |
| v2/en_speaker_9 English Female | |
| v2/zh_speaker_0 Chinese (Simplified) Male | |
| v2/zh_speaker_1 Chinese (Simplified) Male | |
| v2/zh_speaker_2 Chinese (Simplified) Male | |
| v2/zh_speaker_3 Chinese (Simplified) Male | |
| v2/zh_speaker_4 Chinese (Simplified) Female | |
| v2/zh_speaker_5 Chinese (Simplified) Male | |
| v2/zh_speaker_6 Chinese (Simplified) Female | |
| v2/zh_speaker_7 Chinese (Simplified) Female | |
| v2/zh_speaker_8 Chinese (Simplified) Male | |
| v2/zh_speaker_9 Chinese (Simplified) Female | |
| v2/fr_speaker_0 French Male | |
| v2/fr_speaker_1 French Female | |
| v2/fr_speaker_2 French Female | |
| v2/fr_speaker_3 French Male | |
| v2/fr_speaker_4 French Male | |
| v2/fr_speaker_5 French Female | |
| v2/fr_speaker_6 French Male | |
| v2/fr_speaker_7 French Male | |
| v2/fr_speaker_8 French Male | |
| v2/fr_speaker_9 French Male | |
| v2/de_speaker_0 German Male | |
| v2/de_speaker_1 German Male | |
| v2/de_speaker_2 German Male | |
| v2/de_speaker_3 German Female | |
| v2/de_speaker_4 German Male | |
| v2/de_speaker_5 German Male | |
| v2/de_speaker_6 German Male | |
| v2/de_speaker_7 German Male | |
| v2/de_speaker_8 German Female | |
| v2/de_speaker_9 German Male | |
| v2/hi_speaker_0 Hindi Female | |
| v2/hi_speaker_1 Hindi Female | |
| v2/hi_speaker_2 Hindi Male | |
| v2/hi_speaker_3 Hindi Female | |
| v2/hi_speaker_4 Hindi Female | |
| v2/hi_speaker_5 Hindi Male | |
| v2/hi_speaker_6 Hindi Male | |
| v2/hi_speaker_7 Hindi Male | |
| v2/hi_speaker_8 Hindi Male | |
| v2/hi_speaker_9 Hindi Female | |
| v2/it_speaker_0 Italian Male | |
| v2/it_speaker_1 Italian Male | |
| v2/it_speaker_2 Italian Female | |
| v2/it_speaker_3 Italian Male | |
| v2/it_speaker_4 Italian Male | |
| v2/it_speaker_5 Italian Male | |
| v2/it_speaker_6 Italian Male | |
| v2/it_speaker_7 Italian Female | |
| v2/it_speaker_8 Italian Male | |
| v2/it_speaker_9 Italian Female | |
| v2/ja_speaker_0 Japanese Female | |
| v2/ja_speaker_1 Japanese Female | |
| v2/ja_speaker_2 Japanese Male | |
| v2/ja_speaker_3 Japanese Female | |
| v2/ja_speaker_4 Japanese Female | |
| v2/ja_speaker_5 Japanese Female | |
| v2/ja_speaker_6 Japanese Male | |
| v2/ja_speaker_7 Japanese Female | |
| v2/ja_speaker_8 Japanese Female | |
| v2/ja_speaker_9 Japanese Female | |
| v2/ko_speaker_0 Korean Female | |
| v2/ko_speaker_1 Korean Male | |
| v2/ko_speaker_2 Korean Male | |
| v2/ko_speaker_3 Korean Male | |
| v2/ko_speaker_4 Korean Male | |
| v2/ko_speaker_5 Korean Male | |
| v2/ko_speaker_6 Korean Male | |
| v2/ko_speaker_7 Korean Male | |
| v2/ko_speaker_8 Korean Male | |
| v2/ko_speaker_9 Korean Male | |
| v2/pl_speaker_0 Polish Male | |
| v2/pl_speaker_1 Polish Male | |
| v2/pl_speaker_2 Polish Male | |
| v2/pl_speaker_3 Polish Male | |
| v2/pl_speaker_4 Polish Female | |
| v2/pl_speaker_5 Polish Male | |
| v2/pl_speaker_6 Polish Female | |
| v2/pl_speaker_7 Polish Male | |
| v2/pl_speaker_8 Polish Male | |
| v2/pl_speaker_9 Polish Female | |
| v2/pt_speaker_0 Portuguese Male | |
| v2/pt_speaker_1 Portuguese Male | |
| v2/pt_speaker_2 Portuguese Male | |
| v2/pt_speaker_3 Portuguese Male | |
| v2/pt_speaker_4 Portuguese Male | |
| v2/pt_speaker_5 Portuguese Male | |
| v2/pt_speaker_6 Portuguese Male | |
| v2/pt_speaker_7 Portuguese Male | |
| v2/pt_speaker_8 Portuguese Male | |
| v2/pt_speaker_9 Portuguese Male | |
| v2/ru_speaker_0 Russian Male | |
| v2/ru_speaker_1 Russian Male | |
| v2/ru_speaker_2 Russian Male | |
| v2/ru_speaker_3 Russian Male | |
| v2/ru_speaker_4 Russian Male | |
| v2/ru_speaker_5 Russian Female | |
| v2/ru_speaker_6 Russian Female | |
| v2/ru_speaker_7 Russian Male | |
| v2/ru_speaker_8 Russian Male | |
| v2/ru_speaker_9 Russian Female | |
| v2/es_speaker_0 Spanish Male | |
| v2/es_speaker_1 Spanish Male | |
| v2/es_speaker_2 Spanish Male | |
| v2/es_speaker_3 Spanish Male | |
| v2/es_speaker_4 Spanish Male | |
| v2/es_speaker_5 Spanish Male | |
| v2/es_speaker_6 Spanish Male | |
| v2/es_speaker_7 Spanish Male | |
| v2/es_speaker_8 Spanish Female | |
| v2/es_speaker_9 Spanish Female | |
| v2/tr_speaker_0 Turkish Male | |
| v2/tr_speaker_1 Turkish Male | |
| v2/tr_speaker_2 Turkish Male | |
| v2/tr_speaker_3 Turkish Male | |
| v2/tr_speaker_4 Turkish Female | |
| v2/tr_speaker_5 Turkish Female | |
| v2/tr_speaker_6 Turkish Male | |
| v2/tr_speaker_7 Turkish Male | |
| v2/tr_speaker_8 Turkish Male | |
| v2/tr_speaker_9 Turkish Male | |
| """ | |
| # Dividir el mensaje en líneas | |
| lineas = mensaje.split("\n") | |
| datos_deseados = [] | |
| for linea in lineas: | |
| partes = linea.split("\t") | |
| if len(partes) == 3: | |
| clave, _, genero = partes | |
| datos_deseados.append(f"{clave}-{genero}") | |
| return datos_deseados | |
| def get_edge_voice(): | |
| completed_process = subprocess.run(['edge-tts',"-l"], capture_output=True, text=True) | |
| lines = completed_process.stdout.strip().split("\n") | |
| data = [] | |
| current_entry = {} | |
| for line in lines: | |
| if line.startswith("Name: "): | |
| if current_entry: | |
| data.append(current_entry) | |
| current_entry = {"Name": line.split(": ")[1]} | |
| elif line.startswith("Gender: "): | |
| current_entry["Gender"] = line.split(": ")[1] | |
| if current_entry: | |
| data.append(current_entry) | |
| tts_voice = [] | |
| for entry in data: | |
| name = entry["Name"] | |
| gender = entry["Gender"] | |
| formatted_entry = f'{name}-{gender}' | |
| tts_voice.append(formatted_entry) | |
| return tts_voice | |
| #print(set_tts_voice) | |