task-oriented-dialog-agent / speech_conversation_app.py
reecursion's picture
Create speech_conversation_app.py
df90a53 verified
raw
history blame
10.4 kB
import os
import time
import numpy as np
import torch
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForSpeechSeq2Seq
from datasets import load_dataset
import soundfile as sf
# Global variables to track latency
latency_ASR = 0.0
latency_LLM = 0.0
latency_TTS = 0.0
# Global variables to store conversation state
conversation_history = []
audio_output = None
# ASR Models
ASR_OPTIONS = {
"Whisper Small": "openai/whisper-small",
"Wav2Vec2": "facebook/wav2vec2-base-960h"
}
# LLM Models
LLM_OPTIONS = {
"Llama-2 7B Chat": "meta-llama/Llama-2-7b-chat-hf",
"Flan-T5 Small": "google/flan-t5-small"
}
# TTS Models
TTS_OPTIONS = {
"VITS": "espnet/kan-bayashi_ljspeech_vits",
"FastSpeech2": "espnet/kan-bayashi_ljspeech_fastspeech2"
}
# Load models
asr_models = {}
llm_models = {}
tts_models = {}
def load_asr_model(model_name):
"""Load ASR model from Hugging Face"""
global asr_models
if model_name not in asr_models:
print(f"Loading ASR model: {model_name}")
model_id = ASR_OPTIONS[model_name]
if "whisper" in model_id:
asr_models[model_name] = pipeline("automatic-speech-recognition", model=model_id)
else: # wav2vec2
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
asr_models[model_name] = {"processor": processor, "model": model}
return asr_models[model_name]
def load_llm_model(model_name):
"""Load LLM model from Hugging Face"""
global llm_models
if model_name not in llm_models:
print(f"Loading LLM model: {model_name}")
model_id = LLM_OPTIONS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
llm_models[model_name] = {
"model": model,
"tokenizer": tokenizer
}
return llm_models[model_name]
def load_tts_model(model_name):
"""Load TTS model using ESPnet"""
global tts_models
if model_name not in tts_models:
print(f"Loading TTS model: {model_name}")
try:
# Import ESPnet TTS modules
from espnet2.bin.tts_inference import Text2Speech
model_id = TTS_OPTIONS[model_name]
tts = Text2Speech.from_pretrained(model_id)
tts_models[model_name] = tts
except ImportError:
print("ESPnet not installed. Using mock TTS for demonstration.")
tts_models[model_name] = "mock_tts"
return tts_models[model_name]
def transcribe_audio(audio_data, sr, asr_model_name):
"""Transcribe audio using selected ASR model"""
global latency_ASR
start_time = time.time()
model = load_asr_model(asr_model_name)
if "whisper" in ASR_OPTIONS[asr_model_name]:
result = model({"array": audio_data, "sampling_rate": sr})
transcript = result["text"]
else: # wav2vec2
inputs = model["processor"](audio_data, sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
outputs = model["model"].generate(**inputs)
transcript = model["processor"].batch_decode(outputs, skip_special_tokens=True)[0]
latency_ASR = time.time() - start_time
return transcript
def generate_response(transcript, llm_model_name, system_prompt):
"""Generate response using selected LLM model"""
global latency_LLM, conversation_history
start_time = time.time()
model_info = load_llm_model(llm_model_name)
model = model_info["model"]
tokenizer = model_info["tokenizer"]
# Format the prompt based on the model
if "llama" in LLM_OPTIONS[llm_model_name].lower():
# Format for Llama models
if not conversation_history:
conversation_history.append({"role": "system", "content": system_prompt})
conversation_history.append({"role": "user", "content": transcript})
prompt = tokenizer.apply_chat_template(
conversation_history,
tokenize=False,
add_generation_prompt=True
)
else:
# Format for T5 models
prompt = f"{system_prompt}\nUser: {transcript}\nAssistant:"
# Generate text
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
)
# Decode the response
if "llama" in LLM_OPTIONS[llm_model_name].lower():
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the assistant's response
response = response.split("Assistant: ")[-1].strip()
else:
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Add to conversation history
conversation_history.append({"role": "assistant", "content": response})
latency_LLM = time.time() - start_time
return response
def synthesize_speech(text, tts_model_name):
"""Synthesize speech using selected TTS model"""
global latency_TTS
start_time = time.time()
tts = load_tts_model(tts_model_name)
if tts == "mock_tts":
# Mock TTS response for demonstration
# In a real implementation, this would use the ESPnet model
# Load a sample audio file for demonstration
try:
sample_rate = 16000
# Generate a simple sine wave as demo audio
duration = 2 # seconds
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
audio_data = 0.5 * np.sin(2 * np.pi * 220 * t) # 220 Hz sine wave
except Exception as e:
print(f"Error generating mock audio: {e}")
audio_data = np.zeros(16000) # 1 second of silence
sample_rate = 16000
else:
# Use actual ESPnet TTS model
with torch.no_grad():
wav = tts(text)["wav"]
audio_data = wav.numpy()
sample_rate = tts.fs
latency_TTS = time.time() - start_time
return (sample_rate, audio_data)
def process_speech(
audio_input,
asr_option,
llm_option,
tts_option,
system_prompt
):
"""Process speech: ASR -> LLM -> TTS pipeline"""
global audio_output
# Check if audio input is available
if audio_input is None:
return None, "", "", None
# Get audio data
sr, audio_data = audio_input
# ASR: Speech to text
transcript = transcribe_audio(audio_data, sr, asr_option)
# LLM: Generate response
response = generate_response(transcript, llm_option, system_prompt)
# TTS: Text to speech
audio_output = synthesize_speech(response, tts_option)
# Return results
return audio_input, transcript, response, audio_output
def display_latency():
"""Display latency information"""
return f"""
ASR Latency: {latency_ASR:.2f} seconds
LLM Latency: {latency_LLM:.2f} seconds
TTS Latency: {latency_TTS:.2f} seconds
Total Latency: {latency_ASR + latency_LLM + latency_TTS:.2f} seconds
"""
def reset_conversation():
"""Reset the conversation history"""
global conversation_history, audio_output
conversation_history = []
audio_output = None
return None, "", "", None, ""
# Create Gradio interface
with gr.Blocks(title="Conversational Speech System") as demo:
gr.Markdown(
"""
# Conversational Speech System with ASR, LLM, and TTS
This demo showcases a complete speech-to-speech conversation system using:
- **ASR** (Automatic Speech Recognition) to convert your speech to text
- **LLM** (Large Language Model) to generate responses
- **TTS** (Text-to-Speech) to convert the responses to speech
Speak into your microphone and the system will respond with synthesized speech.
"""
)
with gr.Row():
with gr.Column(scale=1):
# Input components
audio_input = gr.Audio(
sources=["microphone"],
type="numpy",
label="Speak here",
)
system_prompt = gr.Textbox(
label="System Prompt (instructions for the LLM)",
value="You are a helpful and friendly AI assistant. Keep your responses concise and under 3 sentences."
)
asr_dropdown = gr.Dropdown(
choices=list(ASR_OPTIONS.keys()),
value=list(ASR_OPTIONS.keys())[0],
label="Select ASR Model"
)
llm_dropdown = gr.Dropdown(
choices=list(LLM_OPTIONS.keys()),
value=list(LLM_OPTIONS.keys())[0],
label="Select LLM Model"
)
tts_dropdown = gr.Dropdown(
choices=list(TTS_OPTIONS.keys()),
value=list(TTS_OPTIONS.keys())[0],
label="Select TTS Model"
)
reset_btn = gr.Button("Reset Conversation")
with gr.Column(scale=1):
# Output components
user_transcript = gr.Textbox(label="Your Speech (ASR Output)")
system_response = gr.Textbox(label="AI Response (LLM Output)")
audio_output_component = gr.Audio(label="AI Voice Response", autoplay=True)
latency_info = gr.Textbox(label="Performance Metrics")
# Set up event handlers
audio_input.change(
process_speech,
inputs=[audio_input, asr_dropdown, llm_dropdown, tts_dropdown, system_prompt],
outputs=[audio_input, user_transcript, system_response, audio_output_component]
).then(
display_latency,
inputs=[],
outputs=[latency_info]
)
reset_btn.click(
reset_conversation,
inputs=[],
outputs=[audio_input, user_transcript, system_response, audio_output_component, latency_info]
)
# Launch the app
if __name__ == "__main__":
demo.launch()