Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import plotly.express as px | |
| from app_backend import fetch_weather, generate_synthetic_data, optimize_load | |
| # Constants | |
| API_KEY = "84e26811a314599e940f343b4d5894a7" | |
| LOCATION = "Pakistan" | |
| # Sidebar | |
| st.sidebar.title("Smart Grid Dashboard") | |
| location = st.sidebar.text_input("Enter Location", LOCATION) | |
| # Fetch and display weather data | |
| weather = fetch_weather(API_KEY, location) | |
| if weather: | |
| st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
| st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
| st.sidebar.write(f"Weather: {weather['weather']}") | |
| # Main dashboard with tabs | |
| tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"]) | |
| with tabs[0]: | |
| st.title("Real-Time Smart Grid Dashboard") | |
| # Generate synthetic data | |
| data = generate_synthetic_data() | |
| # Plot total consumption, grid generation, and storage usage | |
| fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"], | |
| title="Energy Consumption, Generation, and Storage Usage Over Time", | |
| labels={"value": "Energy (kWh)", "variable": "Energy Source"}) | |
| st.plotly_chart(fig) | |
| # Grid health overview | |
| st.subheader("Grid Health Overview") | |
| grid_health_counts = data["grid_health"].value_counts() | |
| st.bar_chart(grid_health_counts) | |
| # Optimization recommendations | |
| current_demand = data["total_consumption_kwh"].iloc[-1] | |
| current_solar = data["solar_output_kw"].iloc[-1] | |
| current_wind = data["wind_output_kw"].iloc[-1] | |
| recommendation = optimize_load(current_demand, current_solar, current_wind) | |
| st.subheader("Recommendations") | |
| st.write(f"Current Load Demand: {current_demand} kWh") | |
| st.write(f"Solar Output: {current_solar} kW") | |
| st.write(f"Wind Output: {current_wind} kW") | |
| st.write(f"Recommendation: {recommendation}") | |
| with tabs[1]: | |
| st.title("Energy Storage Overview") | |
| # Total energy stored | |
| total_storage = 500 # Example of total energy storage | |
| st.subheader(f"Total Energy Stored: {total_storage} kWh") | |
| # Energy storage contribution from different sources | |
| st.subheader("Energy Storage Contributions") | |
| energy_sources = pd.DataFrame({ | |
| "Source": ["Wind", "Solar", "Turbine"], | |
| "Energy (kW/min)": [5, 7, 10] | |
| }) | |
| st.bar_chart(energy_sources.set_index("Source")) | |
| # Show energy storage status with a rounded circle | |
| st.subheader("Energy Storage Circle") | |
| st.markdown("Energy storage is a combination of contributions from different renewable sources.") | |
| # Visualization of energy storage circle using Plotly | |
| storage_data = { | |
| "Source": ["Wind", "Solar", "Turbine"], | |
| "Energy": [5, 7, 10], | |
| } | |
| storage_df = pd.DataFrame(storage_data) | |
| fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources") | |
| st.plotly_chart(fig) | |
| with tabs[2]: | |
| st.title("Energy Trading Overview") | |
| # Energy cubes | |
| st.subheader("Energy Cubes Stored") | |
| energy_cubes = pd.DataFrame({ | |
| "Country": ["China", "Sri Lanka", "Bangladesh"], | |
| "Energy (mWh)": [100, 200, 300], | |
| "Shareable": [True, True, False] | |
| }) | |
| # Displaying the energy cubes in a grid | |
| st.write("Stored energy can be shared with other countries.") | |
| st.dataframe(energy_cubes) | |
| # Visualization of energy that can be shared | |
| st.subheader("Energy Trading Visualization") | |
| st.markdown("The following energy amounts are available for sharing with different countries.") | |
| trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading") | |
| st.plotly_chart(trading_fig) | |