Spaces:
Runtime error
Runtime error
File size: 5,618 Bytes
7b813cc 2204e0b 7b813cc a8df9e4 e3eebda 14d234f 7b813cc e67e1b9 7b813cc e67e1b9 7b813cc e67e1b9 93224ed 14d234f 93224ed 14d234f 93224ed 14d234f 93224ed 14d234f 93224ed 14d234f 93224ed 14d234f e3eebda 14d234f e3eebda 7b813cc 14d234f 7b813cc 14d234f 7b813cc 14d234f 7b813cc 14d234f 7b813cc 14d234f 7b813cc e67e1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from flask import Flask, request, jsonify, render_template
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import Visualizer, ColorMode
import numpy as np
from PIL import Image
import io
import os
import requests
import gdown
from skimage import io as skio
from torchvision.ops import box_iou
import torch
from roboflow import Roboflow
import supervision as sv
import cv2
import tempfile
import os
import numpy as np
import requests
# Initialize Flask app
app = Flask(__name__)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/fetch-image", methods=["POST"])
def fetchImage():
file = None
if "url" in request.form:
url = request.form["url"]
response = requests.get(url)
file = io.BytesIO(response.content)
elif "file" in request.files:
file = request.files["file"]
url = "https://firebasestorage.googleapis.com/v0/b/car-damage-detector-s34rrz.firebasestorage.app/o/users%2FYMd99dt33HaktTWpYp5MM5oYeBE3%2Fuploads%2F1737454072124000.jpg?alt=media&token=9eae79fa-4c06-41a5-9f58-236c39efaac0"
# File name for saving
file_name = "downloaded_image.jpg"
# Download the image
response = requests.get(url)
# Save the image to the current directory
if response.status_code == 200:
with open(file_name, "wb") as file:
file.write(response.content)
print(f"Image downloaded and saved as {file_name}")
else:
print(f"Failed to download image. Status code: {response.status_code}")
# Load image
image = cv2.imread(file_name)
rf = Roboflow(api_key="LqD8Cs4OsoK8seO3CPkf")
project_parts = rf.workspace().project("car-parts-segmentation")
model_parts = project_parts.version(2).model
project_damage = rf.workspace().project("car-damage-detection-ha5mm")
model_damage = project_damage.version(1).model
# Run the damage detection model
result_damage = model_damage.predict(
file_name,
confidence=40,
).json()
# Extract detections from the result
detections_damage = sv.Detections.from_inference(result_damage)
# Read the input image
# Annotate damaged areas of the car
mask_annotator = sv.MaskAnnotator()
annotated_image_damage = mask_annotator.annotate(
scene=image, detections=detections_damage
)
# Create a temporary directory to save outputs
temp_dir = tempfile.mkdtemp()
# Define a repair cost dictionary (per part)
repair_cost_dict = {
"wheel": 100, # Base cost for wheel
"door": 200, # Base cost for door
"hood": 300, # Base cost for hood
"front_bumper": 250, # Base cost for bumper
"trunk": 200,
"front_glass": 150,
"back_left_door": 200,
"left_mirror": 20,
"back_glass": 150,
}
# Initialize total cost
total_cost = 0
# Ensure coordinate processing is done in chunks of 4
coordinates = list(map(int, detections_damage.xyxy.flatten()))
num_damages = (
len(coordinates) // 4
) # Each damage has 4 coordinates (x1, y1, x2, y2)
# Iterate through damages
for i in range(num_damages):
x1, y1, x2, y2 = coordinates[i * 4 : (i + 1) * 4]
# Ensure the coordinates are within image bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
# Crop the damaged region
cropped_damage = image[y1:y2, x1:x2]
# Check if the cropped region is valid
if cropped_damage.size == 0:
print(f"Skipping empty crop for damage region {i + 1}")
continue
# Save the cropped damaged area
damage_image_path = os.path.join(temp_dir, f"damage_image_{i}.png")
cv2.imwrite(damage_image_path, cropped_damage)
# Run the parts detection model on the cropped damage
result_parts = model_parts.predict(damage_image_path, confidence=15).json()
detections_parts = sv.Detections.from_inference(result_parts)
# Calculate repair cost for each detected part
for part in result_parts["predictions"]:
part_name = part["class"]
damage_area = part["width"] * part["height"]
cropped_area = (x2 - x1) * (y2 - y1)
damage_percentage = (damage_area / cropped_area) * 100
# Lookup cost and add to total
base_cost = repair_cost_dict.get(
part_name, 0
) # Default to 0 if part not in dict
repair_cost = (damage_percentage / 100) * base_cost
total_cost += repair_cost
print(
f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
)
# Annotate and save the result
part_annotator = sv.LabelAnnotator()
annotated_parts_image = part_annotator.annotate(
scene=cropped_damage, detections=detections_parts
)
annotated_parts_path = os.path.join(temp_dir, f"annotated_parts_{i}.png")
cv2.imwrite(annotated_parts_path, annotated_parts_image)
# Save the overall annotated image
annotated_image_path = os.path.join(temp_dir, "annotated_image_damage.png")
cv2.imwrite(annotated_image_path, annotated_image_damage)
# Return the total cost in the specified format
result = {"total_cost": total_cost}
print(result)
return jsonify(result)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|