File size: 12,350 Bytes
7b813cc
 
 
 
 
14d234f
 
 
 
bcc0393
14d234f
 
75c33bc
 
a39b793
75c33bc
 
a64384c
f5fe239
76ba6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848becd
f5c4564
7b813cc
 
 
df285c2
bcc0393
f5fe239
0a796a0
 
bcc0393
 
 
 
f5fe239
 
 
 
 
bcc0393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fe239
bcc0393
e67e1b9
 
7b813cc
e67e1b9
7b813cc
e67e1b9
93224ed
 
 
ad9f29a
93224ed
 
 
 
 
 
281f6eb
14d234f
 
 
93224ed
14d234f
 
 
 
 
75c33bc
 
 
 
 
 
 
 
 
14d234f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c4564
14d234f
 
f5c4564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d234f
 
 
93224ed
f5c4564
 
 
 
93224ed
14d234f
f5c4564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a0c2a2
 
c479e13
848becd
 
 
 
 
1a0c2a2
 
 
 
 
 
f5c4564
 
 
14d234f
 
7b813cc
14d234f
7b813cc
e67e1b9
75c33bc
 
 
2b64a89
75c33bc
 
 
 
1712d72
75c33bc
 
 
 
 
1712d72
75c33bc
 
bcc0393
 
357c490
836fb68
 
bcc0393
 
 
 
 
f5fe239
 
 
 
bcc0393
 
 
0a796a0
bcc0393
3f0c1ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95e893d
3f0c1ee
f47808e
dddca60
 
 
 
 
 
 
 
 
 
 
 
 
 
76ba6f0
 
4676214
 
 
466ca4d
b98361b
4676214
 
466ca4d
4676214
 
e88283e
f5fe239
dddca60
f5fe239
466ca4d
 
 
 
 
 
 
f5fe239
466ca4d
f5fe239
bcc0393
 
e67e1b9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from flask import Flask, request, jsonify, render_template
from PIL import Image
import io
import os
import requests
from roboflow import Roboflow
import supervision as sv
import cv2
import tempfile
import gdown
import os
import requests
import requests
import cloudinary
import model
import cloudinary.uploader
from a import main
import numpy as np
import torchvision.transforms as transforms
import pandas as pd
import nibabel as nib
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import cv2
from PIL import Image
from sklearn.model_selection import train_test_split
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from PIL import Image
import os
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from inference_sdk import InferenceHTTPClient, InferenceConfiguration

# Initialize Flask app
app = Flask(__name__)

GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
LOCAL_MODEL_PATH = "checkpoint32.pth"
d = "https://drive.google.com/uc?id=1GfrlFNoa7E4liMHyMuF73nA21yT9SNSb"


def download_file_from_google_drive():
    gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)


da = "a.pth"


def download_file_from_google_drived():
    gdown.download(d, da, quiet=False)


def download_model():
    if not os.path.exists(LOCAL_MODEL_PATH):
        response = requests.get(GDRIVE_MODEL_URL, stream=True)
        if response.status_code == 200:
            with open(LOCAL_MODEL_PATH, "wb") as f:
                f.write(response.content)
        else:
            raise Exception(
                f"Failed to download model from Google Drive: {response.status_code}"
            )


download_file_from_google_drive()
download_file_from_google_drived()


@app.route("/")
def home():
    return render_template("index.html")


@app.route("/fetch-image", methods=["POST"])
def fetchImage():
    file = None
    url = ""
    if "url" in request.form:
        url = request.form["url"]
        response = requests.get(url)
        file = io.BytesIO(response.content)
    elif "file" in request.files:
        file = request.files["file"]
    # url = "https://firebasestorage.googleapis.com/v0/b/car-damage-detector-s34rrz.firebasestorage.app/o/users%2FYMd99dt33HaktTWpYp5MM5oYeBE3%2Fuploads%2F1737454072124000.jpg?alt=media&token=9eae79fa-4c06-41a5-9f58-236c39efaac0"

    # File name for saving
    file_name = "downloaded_image.jpg"

    # Download the image
    response = requests.get(url)

    # Save the image to the current directory
    if response.status_code == 200:
        file_name = "downloaded_image.jpg"

        image = Image.open(io.BytesIO(response.content))

        if image.mode == "RGBA":
            image = image.convert("RGB")

        image.save(file_name, "JPEG", quality=100)
        print(f"Image downloaded and saved as {file_name}")
    else:
        print(f"Failed to download image. Status code: {response.status_code}")
    image = cv2.imread(file_name)

    rf = Roboflow(api_key="LqD8Cs4OsoK8seO3CPkf")

    project_parts = rf.workspace().project("car-parts-segmentation")
    model_parts = project_parts.version(2).model

    project_damage = rf.workspace().project("car-damage-detection-ha5mm")
    model_damage = project_damage.version(1).model

    # Run the damage detection model
    result_damage = model_damage.predict(
        file_name,
        confidence=40,
    ).json()

    # Extract detections from the result
    detections_damage = sv.Detections.from_inference(result_damage)

    # Read the input image

    # Annotate damaged areas of the car
    mask_annotator = sv.MaskAnnotator()
    annotated_image_damage = mask_annotator.annotate(
        scene=image, detections=detections_damage
    )

    # temp_dir = tempfile.mkdtemp()

    # Define a repair cost dictionary (per part)
    repair_costs = {
        "Car-Damage-Detection-1KxY": 1000,  # General damage assessment cost
        "Bodypanel-Dent": 200,
        "Front-Windscreen-Damage": 400,
        "Headlight-Damage": 250,
        "Rear-windscreen-Damage": 350,
        "RunningBoard-Dent": 150,
        "Sidemirror-Damage": 180,
        "Signlight-Damage": 120,
        "Taillight-Damage": 220,
        "back-bumper": 500,
        "back-glass": 400,
        "bonnet-dent": 300,
        "boot-dent": 350,
        "broken_lamp": 100,
        "crack": 250,
        "damaged-door": 600,
        "damaged-front-bumper": 550,
        "damaged-head-light": 270,
        "damaged-hood": 500,
        "damaged-rear-bumper": 520,
        "damaged-rear-window": 380,
        "damaged-tail-light": 230,
        "damaged-trunk": 600,
        "damaged-window": 280,
        "damaged-windscreen": 450,
        "dent": 200,
        "dent-or-scratch": 180,
        "door": 700,
        "doorouter-dent": 250,
        "fender-dent": 220,
        "flat_tire": 100,
        "front-bumper": 500,
        "front-bumper-dent": 450,
        "front-glass": 400,
        "headlight": 250,
        "hood": 500,
        "mirror": 180,
        "pillar-dent": 220,
        "quaterpanel-dent": 270,
        "rear-bumper-dent": 480,
        "roof-dent": 400,
        "scratch": 150,
        "shattered_glass": 500,
        "taillight": 220,
        "trunk": 600,
        "wheel": 250,
        "window": 300,
    }

    total_cost = 0

    # coordinates = list(map(int, detections_damage.xyxy.flatten()))
    # num_damages = (
    #     len(coordinates) // 4
    # )  # Each damage has 4 coordinates (x1, y1, x2, y2)

    # Iterate through damages
    # for i in range(num_damages):
    #     x1, y1, x2, y2 = coordinates[i * 4: (i + 1) * 4]

    #     # Ensure the coordinates are within image bounds
    #     x1, y1 = max(0, x1), max(0, y1)
    #     x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)

    #     # Crop the damaged region
    #     cropped_damage = image[y1:y2, x1:x2]

    #     # Check if the cropped region is valid
    #     if cropped_damage.size == 0:
    #         print(f"Skipping empty crop for damage region {i + 1}")
    #         continue

    #     # Save the cropped damaged area
    #     damage_image_path = os.path.join(temp_dir, f"damage_image_{i}.png")
    #     cv2.imwrite(damage_image_path, cropped_damage)

    #     # Run the parts detection model on the cropped damage
    #     result_parts = model_parts.predict(
    #         damage_image_path, confidence=15).json()
    #     detections_parts = sv.Detections.from_inference(result_parts)

    #     # Calculate repair cost for each detected part
    #     for part in result_parts["predictions"]:
    #         part_name = part["class"]
    #         damage_area = part["width"] * part["height"]
    #         cropped_area = (x2 - x1) * (y2 - y1)
    #         damage_percentage = (damage_area / cropped_area) * 100

    #         # Lookup cost and add to total
    #         base_cost = repair_cost_dict.get(
    #             part_name, 0
    #         )  # Default to 0 if part not in dict
    #         repair_cost = (damage_percentage / 100) * 10 * base_cost
    #         total_cost += round(repair_cost, ndigits=1)

    #         print(
    #             f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
    #         )

    #     # Annotate and save the result
    #     part_annotator = sv.LabelAnnotator()
    #     annotated_parts_image = part_annotator.annotate(
    #         scene=cropped_damage, detections=detections_parts
    #     )
    #     annotated_parts_path = os.path.join(
    #         temp_dir, f"annotated_parts_{i}.png")
    #     cv2.imwrite(annotated_parts_path, annotated_parts_image)

    # # Save the overall annotated image
    # annotated_image_path = os.path.join(temp_dir, "annotated_image_damage.png")
    # cv2.imwrite(annotated_image_path, annotated_image_damage)

    # # Return the total cost in the specified format

    CLIENT = InferenceHTTPClient(
        api_url="https://detect.roboflow.com",
        api_key="LqD8Cs4OsoK8seO3CPkf"
    )
    print(file_name)

    # Set confidence threshold to 50%
    custom_configuration = InferenceConfiguration(confidence_threshold=0.8)
    with CLIENT.use_configuration(custom_configuration):
        result = CLIENT.infer(
            file_name, model_id="car-damage-detection-krsix/1")
    print(result)
    threshold = 0.3  # Adjust this as needed
    filtered_labels = [item["class"]
                       for item in result["predictions"] if item["confidence"] >= threshold]

    print(filtered_labels)
    labels = filtered_labels
    print(labels)
    for class_ in labels:
        total_cost += repair_costs.get(class_, 0)
    result = {"total_cost": total_cost}
    print(result)

    return jsonify(result)


@app.route("/generate-report", methods=["POST"])
def generate_report():
    file = None
    if "report_url" in request.form:
        report_url = request.form["report_url"]
        insurance_url = request.form["insurance_url"]
        url = main(report_url, insurance_url, "output.pdf")
        result = {"url": url}
        return jsonify(result), 200

    elif "file" in request.files:
        file = request.files["file"]
        with open("uploaded_report.pdf", "wb") as f:
            f.write(file.read())
    return jsonify({"message": "Something happened!."}), 404


@app.route("/ms-detection", methods=["POST"])
def predict():
    file = request.files["file"]

    if not file:
        return jsonify({"error": "file not uploaded"}), 400

    # Save file temporarily
    temp_path = os.path.join(tempfile.gettempdir(), file.filename)
    file.save(temp_path)
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
    ])
    if file.filename.lower().endswith((".png", ".jpg", ".jpeg")):
        image = Image.open(temp_path)
        image_save_path = os.path.join(
            tempfile.gettempdir(), file.filename.lower())
        image.save(image_save_path)

    def is_mri_image(image_path):
        img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

        if img is None:
            return False  # Invalid image

        # Apply Canny edge detection
        edges = cv2.Canny(img, 50, 150)

        # Calculate edge density (MRI images have high edge presence)
        edge_density = np.sum(edges > 0) / edges.size
        print(edge_density)
        return edge_density > 0.05

    if (is_mri_image(temp_path)):
        return jsonify({"message": "Not an mri image", "confidence": 0.95, "saved_path": image_save_path})
    a, b = model.check_file(temp_path)

    class ResNetRegression(nn.Module):
        def __init__(self):
            super(ResNetRegression, self).__init__()
            self.model = models.resnet34(pretrained=True)
            in_features = self.model.fc.in_features
            # Change output layer for regression
            self.model.fc = nn.Linear(in_features, 1)

        def forward(self, x):
            return self.model(x)

    # Initialize Model, Loss, and Optimizer
    model_new = ResNetRegression()
    checkpoint = torch.load(
        "/home/user/app/a.pth", weights_only=False, map_location=torch.device('cpu'))

    def remove_module_from_checkpoint(checkpoint):
        new_state_dict = {}
        print(checkpoint.keys())
        for key, value in checkpoint.items():
            new_key = key.replace("module.", "")
            new_state_dict[new_key] = value
        checkpoint = new_state_dict
        return checkpoint
    checkpoint = remove_module_from_checkpoint(checkpoint)
    model_new.load_state_dict(checkpoint)
    image = Image.open(temp_path).convert("RGB")
    output = model_new(transform(image).unsqueeze(0))
    stage = output.item()
    if not a == "No ms detected":
        if stage <= 2.0:
            stage = "Mild"
        elif stage >= 2.0 and stage <= 3.2:
            stage = "Moderate"
        else:
            stage = "Severe"
    else:
        stage = "No ms detected"
    return jsonify({"message": a, "confidence": b, "stage": stage, "saved_path": image_save_path})


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)