File size: 7,580 Bytes
7b813cc
 
 
 
 
14d234f
 
 
 
bcc0393
14d234f
 
75c33bc
 
bcc0393
75c33bc
 
7b813cc
 
 
 
df285c2
bcc0393
 
c8b0f2b
0a796a0
 
bcc0393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67e1b9
 
7b813cc
e67e1b9
7b813cc
e67e1b9
93224ed
 
 
 
 
 
 
 
 
281f6eb
14d234f
 
 
93224ed
14d234f
 
 
 
 
75c33bc
 
 
 
 
 
 
 
 
14d234f
 
93224ed
14d234f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93224ed
14d234f
 
 
 
 
93224ed
14d234f
 
75c33bc
93224ed
14d234f
 
 
e3eebda
14d234f
 
 
 
 
 
e3eebda
7b813cc
14d234f
 
 
 
 
75c33bc
 
14d234f
 
 
 
 
 
 
 
 
 
 
 
 
21d9451
44e3d68
14d234f
 
 
 
7b813cc
14d234f
 
 
 
 
75c33bc
 
14d234f
7b813cc
14d234f
 
 
7b813cc
14d234f
 
 
7b813cc
14d234f
7b813cc
e67e1b9
75c33bc
 
 
2b64a89
75c33bc
 
 
 
1712d72
75c33bc
 
 
 
 
1712d72
75c33bc
 
bcc0393
 
357c490
836fb68
 
bcc0393
 
 
 
 
 
 
 
0a796a0
bcc0393
 
 
 
 
e67e1b9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from flask import Flask, request, jsonify, render_template
from PIL import Image
import io
import os
import requests
from roboflow import Roboflow
import supervision as sv
import cv2
import tempfile
import gdown
import os
import requests
import requests
import cloudinary
import model
import cloudinary.uploader
from a import main

# Initialize Flask app
app = Flask(__name__)

GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
LOCAL_MODEL_PATH = "checkpoint32.pth"

print(GDRIVE_MODEL_URL)


def download_file_from_google_drive():
    gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)


file_id = "1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
destination = "checkpoint32.pth"


def download_model():
    if not os.path.exists(LOCAL_MODEL_PATH):
        response = requests.get(GDRIVE_MODEL_URL, stream=True)
        if response.status_code == 200:
            with open(LOCAL_MODEL_PATH, "wb") as f:
                f.write(response.content)
        else:
            raise Exception(
                f"Failed to download model from Google Drive: {response.status_code}"
            )


download_file_from_google_drive()


@app.route("/")
def home():
    return render_template("index.html")


@app.route("/fetch-image", methods=["POST"])
def fetchImage():
    file = None
    if "url" in request.form:
        url = request.form["url"]
        response = requests.get(url)
        file = io.BytesIO(response.content)
    elif "file" in request.files:
        file = request.files["file"]
    # url = "https://firebasestorage.googleapis.com/v0/b/car-damage-detector-s34rrz.firebasestorage.app/o/users%2FYMd99dt33HaktTWpYp5MM5oYeBE3%2Fuploads%2F1737454072124000.jpg?alt=media&token=9eae79fa-4c06-41a5-9f58-236c39efaac0"

    # File name for saving
    file_name = "downloaded_image.jpg"

    # Download the image
    response = requests.get(url)

    # Save the image to the current directory
    if response.status_code == 200:
        file_name = "downloaded_image.jpg"

        image = Image.open(io.BytesIO(response.content))

        if image.mode == "RGBA":
            image = image.convert("RGB")

        image.save(file_name, "JPEG", quality=100)
        print(f"Image downloaded and saved as {file_name}")
    else:
        print(f"Failed to download image. Status code: {response.status_code}")
    # Load image
    image = cv2.imread(file_name)

    rf = Roboflow(api_key="LqD8Cs4OsoK8seO3CPkf")

    project_parts = rf.workspace().project("car-parts-segmentation")
    model_parts = project_parts.version(2).model

    project_damage = rf.workspace().project("car-damage-detection-ha5mm")
    model_damage = project_damage.version(1).model

    # Run the damage detection model
    result_damage = model_damage.predict(
        file_name,
        confidence=40,
    ).json()

    # Extract detections from the result
    detections_damage = sv.Detections.from_inference(result_damage)

    # Read the input image

    # Annotate damaged areas of the car
    mask_annotator = sv.MaskAnnotator()
    annotated_image_damage = mask_annotator.annotate(
        scene=image, detections=detections_damage
    )

    # Create a temporary directory to save outputs
    temp_dir = tempfile.mkdtemp()

    # Define a repair cost dictionary (per part)
    repair_cost_dict = {
        "wheel": 100,  # Base cost for wheel
        "door": 200,  # Base cost for door
        "hood": 300,  # Base cost for hood
        "front_bumper": 250,  # Base cost for bumper
        "trunk": 200,
        "front_glass": 150,
        "back_left_door": 200,
        "left_mirror": 20,
        "back_glass": 150,
    }

    # Initialize total cost
    total_cost = 0

    # Ensure coordinate processing is done in chunks of 4
    coordinates = list(map(int, detections_damage.xyxy.flatten()))
    num_damages = (
        len(coordinates) // 4
    )  # Each damage has 4 coordinates (x1, y1, x2, y2)

    # Iterate through damages
    for i in range(num_damages):
        x1, y1, x2, y2 = coordinates[i * 4: (i + 1) * 4]

        # Ensure the coordinates are within image bounds
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)

        # Crop the damaged region
        cropped_damage = image[y1:y2, x1:x2]

        # Check if the cropped region is valid
        if cropped_damage.size == 0:
            print(f"Skipping empty crop for damage region {i + 1}")
            continue

        # Save the cropped damaged area
        damage_image_path = os.path.join(temp_dir, f"damage_image_{i}.png")
        cv2.imwrite(damage_image_path, cropped_damage)

        # Run the parts detection model on the cropped damage
        result_parts = model_parts.predict(
            damage_image_path, confidence=15).json()
        detections_parts = sv.Detections.from_inference(result_parts)

        # Calculate repair cost for each detected part
        for part in result_parts["predictions"]:
            part_name = part["class"]
            damage_area = part["width"] * part["height"]
            cropped_area = (x2 - x1) * (y2 - y1)
            damage_percentage = (damage_area / cropped_area) * 100

            # Lookup cost and add to total
            base_cost = repair_cost_dict.get(
                part_name, 0
            )  # Default to 0 if part not in dict
            repair_cost = (damage_percentage / 100) * 10 * base_cost
            total_cost += round(repair_cost, ndigits=1)

            print(
                f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
            )

        # Annotate and save the result
        part_annotator = sv.LabelAnnotator()
        annotated_parts_image = part_annotator.annotate(
            scene=cropped_damage, detections=detections_parts
        )
        annotated_parts_path = os.path.join(
            temp_dir, f"annotated_parts_{i}.png")
        cv2.imwrite(annotated_parts_path, annotated_parts_image)

    # Save the overall annotated image
    annotated_image_path = os.path.join(temp_dir, "annotated_image_damage.png")
    cv2.imwrite(annotated_image_path, annotated_image_damage)

    # Return the total cost in the specified format
    result = {"total_cost": total_cost}
    print(result)

    return jsonify(result)


@app.route("/generate-report", methods=["POST"])
def generate_report():
    file = None
    if "report_url" in request.form:
        report_url = request.form["report_url"]
        insurance_url = request.form["insurance_url"]
        url = main(report_url, insurance_url, "output.pdf")
        result = {"url": url}
        return jsonify(result), 200

    elif "file" in request.files:
        file = request.files["file"]
        with open("uploaded_report.pdf", "wb") as f:
            f.write(file.read())
    return jsonify({"message": "Something happened!."}), 404


@app.route("/ms-detection", methods=["POST"])
def predict():
    file = request.files["file"]

    if not file:
        return jsonify({"error": "file not uploaded"}), 400

    # Save file temporarily
    temp_path = os.path.join(tempfile.gettempdir(), file.filename)
    file.save(temp_path)
    if file.filename.lower().endswith((".png", ".jpg", ".jpeg")):
        image = Image.open(temp_path)
        image_save_path = os.path.join(
            tempfile.gettempdir(), file.filename.lower())
        image.save(image_save_path)

    return jsonify({"message": model.check_file(temp_path), "saved_path": image_save_path})


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)