Spaces:
Runtime error
Runtime error
File size: 7,580 Bytes
7b813cc 14d234f bcc0393 14d234f 75c33bc bcc0393 75c33bc 7b813cc df285c2 bcc0393 c8b0f2b 0a796a0 bcc0393 e67e1b9 7b813cc e67e1b9 7b813cc e67e1b9 93224ed 281f6eb 14d234f 93224ed 14d234f 75c33bc 14d234f 93224ed 14d234f 93224ed 14d234f 93224ed 14d234f 75c33bc 93224ed 14d234f e3eebda 14d234f e3eebda 7b813cc 14d234f 75c33bc 14d234f 21d9451 44e3d68 14d234f 7b813cc 14d234f 75c33bc 14d234f 7b813cc 14d234f 7b813cc 14d234f 7b813cc 14d234f 7b813cc e67e1b9 75c33bc 2b64a89 75c33bc 1712d72 75c33bc 1712d72 75c33bc bcc0393 357c490 836fb68 bcc0393 0a796a0 bcc0393 e67e1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
from flask import Flask, request, jsonify, render_template
from PIL import Image
import io
import os
import requests
from roboflow import Roboflow
import supervision as sv
import cv2
import tempfile
import gdown
import os
import requests
import requests
import cloudinary
import model
import cloudinary.uploader
from a import main
# Initialize Flask app
app = Flask(__name__)
GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
LOCAL_MODEL_PATH = "checkpoint32.pth"
print(GDRIVE_MODEL_URL)
def download_file_from_google_drive():
gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)
file_id = "1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
destination = "checkpoint32.pth"
def download_model():
if not os.path.exists(LOCAL_MODEL_PATH):
response = requests.get(GDRIVE_MODEL_URL, stream=True)
if response.status_code == 200:
with open(LOCAL_MODEL_PATH, "wb") as f:
f.write(response.content)
else:
raise Exception(
f"Failed to download model from Google Drive: {response.status_code}"
)
download_file_from_google_drive()
@app.route("/")
def home():
return render_template("index.html")
@app.route("/fetch-image", methods=["POST"])
def fetchImage():
file = None
if "url" in request.form:
url = request.form["url"]
response = requests.get(url)
file = io.BytesIO(response.content)
elif "file" in request.files:
file = request.files["file"]
# url = "https://firebasestorage.googleapis.com/v0/b/car-damage-detector-s34rrz.firebasestorage.app/o/users%2FYMd99dt33HaktTWpYp5MM5oYeBE3%2Fuploads%2F1737454072124000.jpg?alt=media&token=9eae79fa-4c06-41a5-9f58-236c39efaac0"
# File name for saving
file_name = "downloaded_image.jpg"
# Download the image
response = requests.get(url)
# Save the image to the current directory
if response.status_code == 200:
file_name = "downloaded_image.jpg"
image = Image.open(io.BytesIO(response.content))
if image.mode == "RGBA":
image = image.convert("RGB")
image.save(file_name, "JPEG", quality=100)
print(f"Image downloaded and saved as {file_name}")
else:
print(f"Failed to download image. Status code: {response.status_code}")
# Load image
image = cv2.imread(file_name)
rf = Roboflow(api_key="LqD8Cs4OsoK8seO3CPkf")
project_parts = rf.workspace().project("car-parts-segmentation")
model_parts = project_parts.version(2).model
project_damage = rf.workspace().project("car-damage-detection-ha5mm")
model_damage = project_damage.version(1).model
# Run the damage detection model
result_damage = model_damage.predict(
file_name,
confidence=40,
).json()
# Extract detections from the result
detections_damage = sv.Detections.from_inference(result_damage)
# Read the input image
# Annotate damaged areas of the car
mask_annotator = sv.MaskAnnotator()
annotated_image_damage = mask_annotator.annotate(
scene=image, detections=detections_damage
)
# Create a temporary directory to save outputs
temp_dir = tempfile.mkdtemp()
# Define a repair cost dictionary (per part)
repair_cost_dict = {
"wheel": 100, # Base cost for wheel
"door": 200, # Base cost for door
"hood": 300, # Base cost for hood
"front_bumper": 250, # Base cost for bumper
"trunk": 200,
"front_glass": 150,
"back_left_door": 200,
"left_mirror": 20,
"back_glass": 150,
}
# Initialize total cost
total_cost = 0
# Ensure coordinate processing is done in chunks of 4
coordinates = list(map(int, detections_damage.xyxy.flatten()))
num_damages = (
len(coordinates) // 4
) # Each damage has 4 coordinates (x1, y1, x2, y2)
# Iterate through damages
for i in range(num_damages):
x1, y1, x2, y2 = coordinates[i * 4: (i + 1) * 4]
# Ensure the coordinates are within image bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
# Crop the damaged region
cropped_damage = image[y1:y2, x1:x2]
# Check if the cropped region is valid
if cropped_damage.size == 0:
print(f"Skipping empty crop for damage region {i + 1}")
continue
# Save the cropped damaged area
damage_image_path = os.path.join(temp_dir, f"damage_image_{i}.png")
cv2.imwrite(damage_image_path, cropped_damage)
# Run the parts detection model on the cropped damage
result_parts = model_parts.predict(
damage_image_path, confidence=15).json()
detections_parts = sv.Detections.from_inference(result_parts)
# Calculate repair cost for each detected part
for part in result_parts["predictions"]:
part_name = part["class"]
damage_area = part["width"] * part["height"]
cropped_area = (x2 - x1) * (y2 - y1)
damage_percentage = (damage_area / cropped_area) * 100
# Lookup cost and add to total
base_cost = repair_cost_dict.get(
part_name, 0
) # Default to 0 if part not in dict
repair_cost = (damage_percentage / 100) * 10 * base_cost
total_cost += round(repair_cost, ndigits=1)
print(
f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
)
# Annotate and save the result
part_annotator = sv.LabelAnnotator()
annotated_parts_image = part_annotator.annotate(
scene=cropped_damage, detections=detections_parts
)
annotated_parts_path = os.path.join(
temp_dir, f"annotated_parts_{i}.png")
cv2.imwrite(annotated_parts_path, annotated_parts_image)
# Save the overall annotated image
annotated_image_path = os.path.join(temp_dir, "annotated_image_damage.png")
cv2.imwrite(annotated_image_path, annotated_image_damage)
# Return the total cost in the specified format
result = {"total_cost": total_cost}
print(result)
return jsonify(result)
@app.route("/generate-report", methods=["POST"])
def generate_report():
file = None
if "report_url" in request.form:
report_url = request.form["report_url"]
insurance_url = request.form["insurance_url"]
url = main(report_url, insurance_url, "output.pdf")
result = {"url": url}
return jsonify(result), 200
elif "file" in request.files:
file = request.files["file"]
with open("uploaded_report.pdf", "wb") as f:
f.write(file.read())
return jsonify({"message": "Something happened!."}), 404
@app.route("/ms-detection", methods=["POST"])
def predict():
file = request.files["file"]
if not file:
return jsonify({"error": "file not uploaded"}), 400
# Save file temporarily
temp_path = os.path.join(tempfile.gettempdir(), file.filename)
file.save(temp_path)
if file.filename.lower().endswith((".png", ".jpg", ".jpeg")):
image = Image.open(temp_path)
image_save_path = os.path.join(
tempfile.gettempdir(), file.filename.lower())
image.save(image_save_path)
return jsonify({"message": model.check_file(temp_path), "saved_path": image_save_path})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|