reidddd commited on
Commit
96cdb25
·
2 Parent(s): c34b507 466ca4d

Merge branch 'main' of https://huggingface.co/spaces/reidddd/carDamageDetection

Browse files
Files changed (10) hide show
  1. .gitignore +5 -1
  2. a.png +0 -0
  3. ad.png +0 -0
  4. app.py +138 -2
  5. download.jpeg +0 -0
  6. imagenet_classes.txt +1000 -0
  7. model.py +164 -0
  8. requirements.txt +4 -0
  9. temp.py +6 -6
  10. test.py +21 -0
.gitignore CHANGED
@@ -1,3 +1,7 @@
1
  **/model_final.pth
2
  **/__pycache__
3
- **/model_final.ptht7kgwblo.part
 
 
 
 
 
1
  **/model_final.pth
2
  **/__pycache__
3
+ **/*.png
4
+ **/*.jpeg
5
+ **/*.jpg
6
+ **/model_final.ptht7kgwblo.part
7
+ **/model_final.ptht7kgwblo
a.png ADDED
ad.png ADDED
app.py CHANGED
@@ -7,16 +7,72 @@ from roboflow import Roboflow
7
  import supervision as sv
8
  import cv2
9
  import tempfile
 
10
  import os
11
  import requests
12
  import requests
13
  import cloudinary
 
14
  import cloudinary.uploader
15
  from a import main
16
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  # Initialize Flask app
18
  app = Flask(__name__)
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  @app.route("/")
22
  def home():
@@ -26,6 +82,7 @@ def home():
26
  @app.route("/fetch-image", methods=["POST"])
27
  def fetchImage():
28
  file = None
 
29
  if "url" in request.form:
30
  url = request.form["url"]
31
  response = requests.get(url)
@@ -143,7 +200,7 @@ def fetchImage():
143
  part_name, 0
144
  ) # Default to 0 if part not in dict
145
  repair_cost = (damage_percentage / 100) * 10 * base_cost
146
- total_cost += repair_cost
147
 
148
  print(
149
  f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
@@ -186,5 +243,84 @@ def generate_report():
186
  return jsonify({"message": "Something happened!."}), 404
187
 
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  if __name__ == "__main__":
190
  app.run(host="0.0.0.0", port=7860)
 
7
  import supervision as sv
8
  import cv2
9
  import tempfile
10
+ import gdown
11
  import os
12
  import requests
13
  import requests
14
  import cloudinary
15
+ import model
16
  import cloudinary.uploader
17
  from a import main
18
+ import numpy as np
19
+ import torchvision.transforms as transforms
20
+ import pandas as pd
21
+ import nibabel as nib
22
+ import numpy as np
23
+ import torch
24
+ import torch.nn as nn
25
+ import torchvision
26
+ import torchvision.transforms as transforms
27
+ import cv2
28
+ from PIL import Image
29
+ from sklearn.model_selection import train_test_split
30
+ import os
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.optim as optim
34
+ import torchvision.transforms as transforms
35
+ import torchvision.models as models
36
+ from torch.utils.data import Dataset, DataLoader
37
+ import pandas as pd
38
+ from PIL import Image
39
+ import os
40
+ from sklearn.model_selection import train_test_split
41
+ from sklearn.preprocessing import MinMaxScaler
42
  # Initialize Flask app
43
  app = Flask(__name__)
44
 
45
+ GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
46
+ LOCAL_MODEL_PATH = "checkpoint32.pth"
47
+ d = "https://drive.google.com/uc?id=1GfrlFNoa7E4liMHyMuF73nA21yT9SNSb"
48
+
49
+
50
+ def download_file_from_google_drive():
51
+ gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)
52
+
53
+
54
+ da = "a.pth"
55
+
56
+
57
+ def download_file_from_google_drived():
58
+ gdown.download(d, da, quiet=False)
59
+
60
+
61
+ def download_model():
62
+ if not os.path.exists(LOCAL_MODEL_PATH):
63
+ response = requests.get(GDRIVE_MODEL_URL, stream=True)
64
+ if response.status_code == 200:
65
+ with open(LOCAL_MODEL_PATH, "wb") as f:
66
+ f.write(response.content)
67
+ else:
68
+ raise Exception(
69
+ f"Failed to download model from Google Drive: {response.status_code}"
70
+ )
71
+
72
+
73
+ download_file_from_google_drive()
74
+ download_file_from_google_drived()
75
+
76
 
77
  @app.route("/")
78
  def home():
 
82
  @app.route("/fetch-image", methods=["POST"])
83
  def fetchImage():
84
  file = None
85
+ url = ""
86
  if "url" in request.form:
87
  url = request.form["url"]
88
  response = requests.get(url)
 
200
  part_name, 0
201
  ) # Default to 0 if part not in dict
202
  repair_cost = (damage_percentage / 100) * 10 * base_cost
203
+ total_cost += round(repair_cost, ndigits=1)
204
 
205
  print(
206
  f"Damage {i + 1} - {part_name}: {damage_percentage:.2f}% damaged, Cost: ${repair_cost:.2f}"
 
243
  return jsonify({"message": "Something happened!."}), 404
244
 
245
 
246
+ @app.route("/ms-detection", methods=["POST"])
247
+ def predict():
248
+ file = request.files["file"]
249
+
250
+ if not file:
251
+ return jsonify({"error": "file not uploaded"}), 400
252
+
253
+ # Save file temporarily
254
+ temp_path = os.path.join(tempfile.gettempdir(), file.filename)
255
+ file.save(temp_path)
256
+ transform = transforms.Compose([
257
+ transforms.Resize((224, 224)),
258
+ transforms.ToTensor(),
259
+ ])
260
+ if file.filename.lower().endswith((".png", ".jpg", ".jpeg")):
261
+ image = Image.open(temp_path)
262
+ image_save_path = os.path.join(
263
+ tempfile.gettempdir(), file.filename.lower())
264
+ image.save(image_save_path)
265
+
266
+ def is_mri_image(image_path):
267
+ img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
268
+
269
+ if img is None:
270
+ return False # Invalid image
271
+
272
+ # Apply Canny edge detection
273
+ edges = cv2.Canny(img, 50, 150)
274
+
275
+ # Calculate edge density (MRI images have high edge presence)
276
+ edge_density = np.sum(edges > 0) / edges.size
277
+ print(edge_density)
278
+ return edge_density > 0.05
279
+
280
+ if (is_mri_image(temp_path)):
281
+ return jsonify({"message": "Not an mri image", "confidence": 0.95, "saved_path": image_save_path})
282
+ a, b = model.check_file(temp_path)
283
+
284
+ class ResNetRegression(nn.Module):
285
+ def __init__(self):
286
+ super(ResNetRegression, self).__init__()
287
+ self.model = models.resnet34(pretrained=True)
288
+ in_features = self.model.fc.in_features
289
+ # Change output layer for regression
290
+ self.model.fc = nn.Linear(in_features, 1)
291
+
292
+ def forward(self, x):
293
+ return self.model(x)
294
+
295
+ # Initialize Model, Loss, and Optimizer
296
+ model_new = ResNetRegression()
297
+ checkpoint = torch.load(
298
+ "/home/user/app/a.pth", weights_only=False, map_location=torch.device('cpu'))
299
+
300
+ def remove_module_from_checkpoint(checkpoint):
301
+ new_state_dict = {}
302
+ print(checkpoint.keys())
303
+ for key, value in checkpoint.items():
304
+ new_key = key.replace("module.", "")
305
+ new_state_dict[new_key] = value
306
+ checkpoint = new_state_dict
307
+ return checkpoint
308
+ checkpoint = remove_module_from_checkpoint(checkpoint)
309
+ model_new.load_state_dict(checkpoint)
310
+ image = Image.open(temp_path).convert("RGB")
311
+ output = model_new(transform(image).unsqueeze(0))
312
+ stage = output.item()
313
+ if not a == "No ms detected":
314
+ if stage <= 2.0:
315
+ stage = "Mild"
316
+ elif stage >= 2.0 and stage <= 3.2:
317
+ stage = "Moderate"
318
+ else:
319
+ stage = "Severe"
320
+ else:
321
+ stage = "No ms detected"
322
+ return jsonify({"message": a, "confidence": b, "stage": stage, "saved_path": image_save_path})
323
+
324
+
325
  if __name__ == "__main__":
326
  app.run(host="0.0.0.0", port=7860)
download.jpeg ADDED
imagenet_classes.txt ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tench
2
+ goldfish
3
+ great white shark
4
+ tiger shark
5
+ hammerhead
6
+ electric ray
7
+ stingray
8
+ cock
9
+ hen
10
+ ostrich
11
+ brambling
12
+ goldfinch
13
+ house finch
14
+ junco
15
+ indigo bunting
16
+ robin
17
+ bulbul
18
+ jay
19
+ magpie
20
+ chickadee
21
+ water ouzel
22
+ kite
23
+ bald eagle
24
+ vulture
25
+ great grey owl
26
+ European fire salamander
27
+ common newt
28
+ eft
29
+ spotted salamander
30
+ axolotl
31
+ bullfrog
32
+ tree frog
33
+ tailed frog
34
+ loggerhead
35
+ leatherback turtle
36
+ mud turtle
37
+ terrapin
38
+ box turtle
39
+ banded gecko
40
+ common iguana
41
+ American chameleon
42
+ whiptail
43
+ agama
44
+ frilled lizard
45
+ alligator lizard
46
+ Gila monster
47
+ green lizard
48
+ African chameleon
49
+ Komodo dragon
50
+ African crocodile
51
+ American alligator
52
+ triceratops
53
+ thunder snake
54
+ ringneck snake
55
+ hognose snake
56
+ green snake
57
+ king snake
58
+ garter snake
59
+ water snake
60
+ vine snake
61
+ night snake
62
+ boa constrictor
63
+ rock python
64
+ Indian cobra
65
+ green mamba
66
+ sea snake
67
+ horned viper
68
+ diamondback
69
+ sidewinder
70
+ trilobite
71
+ harvestman
72
+ scorpion
73
+ black and gold garden spider
74
+ barn spider
75
+ garden spider
76
+ black widow
77
+ tarantula
78
+ wolf spider
79
+ tick
80
+ centipede
81
+ black grouse
82
+ ptarmigan
83
+ ruffed grouse
84
+ prairie chicken
85
+ peacock
86
+ quail
87
+ partridge
88
+ African grey
89
+ macaw
90
+ sulphur-crested cockatoo
91
+ lorikeet
92
+ coucal
93
+ bee eater
94
+ hornbill
95
+ hummingbird
96
+ jacamar
97
+ toucan
98
+ drake
99
+ red-breasted merganser
100
+ goose
101
+ black swan
102
+ tusker
103
+ echidna
104
+ platypus
105
+ wallaby
106
+ koala
107
+ wombat
108
+ jellyfish
109
+ sea anemone
110
+ brain coral
111
+ flatworm
112
+ nematode
113
+ conch
114
+ snail
115
+ slug
116
+ sea slug
117
+ chiton
118
+ chambered nautilus
119
+ Dungeness crab
120
+ rock crab
121
+ fiddler crab
122
+ king crab
123
+ American lobster
124
+ spiny lobster
125
+ crayfish
126
+ hermit crab
127
+ isopod
128
+ white stork
129
+ black stork
130
+ spoonbill
131
+ flamingo
132
+ little blue heron
133
+ American egret
134
+ bittern
135
+ crane
136
+ limpkin
137
+ European gallinule
138
+ American coot
139
+ bustard
140
+ ruddy turnstone
141
+ red-backed sandpiper
142
+ redshank
143
+ dowitcher
144
+ oystercatcher
145
+ pelican
146
+ king penguin
147
+ albatross
148
+ grey whale
149
+ killer whale
150
+ dugong
151
+ sea lion
152
+ Chihuahua
153
+ Japanese spaniel
154
+ Maltese dog
155
+ Pekinese
156
+ Shih-Tzu
157
+ Blenheim spaniel
158
+ papillon
159
+ toy terrier
160
+ Rhodesian ridgeback
161
+ Afghan hound
162
+ basset
163
+ beagle
164
+ bloodhound
165
+ bluetick
166
+ black-and-tan coonhound
167
+ Walker hound
168
+ English foxhound
169
+ redbone
170
+ borzoi
171
+ Irish wolfhound
172
+ Italian greyhound
173
+ whippet
174
+ Ibizan hound
175
+ Norwegian elkhound
176
+ otterhound
177
+ Saluki
178
+ Scottish deerhound
179
+ Weimaraner
180
+ Staffordshire bullterrier
181
+ American Staffordshire terrier
182
+ Bedlington terrier
183
+ Border terrier
184
+ Kerry blue terrier
185
+ Irish terrier
186
+ Norfolk terrier
187
+ Norwich terrier
188
+ Yorkshire terrier
189
+ wire-haired fox terrier
190
+ Lakeland terrier
191
+ Sealyham terrier
192
+ Airedale
193
+ cairn
194
+ Australian terrier
195
+ Dandie Dinmont
196
+ Boston bull
197
+ miniature schnauzer
198
+ giant schnauzer
199
+ standard schnauzer
200
+ Scotch terrier
201
+ Tibetan terrier
202
+ silky terrier
203
+ soft-coated wheaten terrier
204
+ West Highland white terrier
205
+ Lhasa
206
+ flat-coated retriever
207
+ curly-coated retriever
208
+ golden retriever
209
+ Labrador retriever
210
+ Chesapeake Bay retriever
211
+ German short-haired pointer
212
+ vizsla
213
+ English setter
214
+ Irish setter
215
+ Gordon setter
216
+ Brittany spaniel
217
+ clumber
218
+ English springer
219
+ Welsh springer spaniel
220
+ cocker spaniel
221
+ Sussex spaniel
222
+ Irish water spaniel
223
+ kuvasz
224
+ schipperke
225
+ groenendael
226
+ malinois
227
+ briard
228
+ kelpie
229
+ komondor
230
+ Old English sheepdog
231
+ Shetland sheepdog
232
+ collie
233
+ Border collie
234
+ Bouvier des Flandres
235
+ Rottweiler
236
+ German shepherd
237
+ Doberman
238
+ miniature pinscher
239
+ Greater Swiss Mountain dog
240
+ Bernese mountain dog
241
+ Appenzeller
242
+ EntleBucher
243
+ boxer
244
+ bull mastiff
245
+ Tibetan mastiff
246
+ French bulldog
247
+ Great Dane
248
+ Saint Bernard
249
+ Eskimo dog
250
+ malamute
251
+ Siberian husky
252
+ dalmatian
253
+ affenpinscher
254
+ basenji
255
+ pug
256
+ Leonberg
257
+ Newfoundland
258
+ Great Pyrenees
259
+ Samoyed
260
+ Pomeranian
261
+ chow
262
+ keeshond
263
+ Brabancon griffon
264
+ Pembroke
265
+ Cardigan
266
+ toy poodle
267
+ miniature poodle
268
+ standard poodle
269
+ Mexican hairless
270
+ timber wolf
271
+ white wolf
272
+ red wolf
273
+ coyote
274
+ dingo
275
+ dhole
276
+ African hunting dog
277
+ hyena
278
+ red fox
279
+ kit fox
280
+ Arctic fox
281
+ grey fox
282
+ tabby
283
+ tiger cat
284
+ Persian cat
285
+ Siamese cat
286
+ Egyptian cat
287
+ cougar
288
+ lynx
289
+ leopard
290
+ snow leopard
291
+ jaguar
292
+ lion
293
+ tiger
294
+ cheetah
295
+ brown bear
296
+ American black bear
297
+ ice bear
298
+ sloth bear
299
+ mongoose
300
+ meerkat
301
+ tiger beetle
302
+ ladybug
303
+ ground beetle
304
+ long-horned beetle
305
+ leaf beetle
306
+ dung beetle
307
+ rhinoceros beetle
308
+ weevil
309
+ fly
310
+ bee
311
+ ant
312
+ grasshopper
313
+ cricket
314
+ walking stick
315
+ cockroach
316
+ mantis
317
+ cicada
318
+ leafhopper
319
+ lacewing
320
+ dragonfly
321
+ damselfly
322
+ admiral
323
+ ringlet
324
+ monarch
325
+ cabbage butterfly
326
+ sulphur butterfly
327
+ lycaenid
328
+ starfish
329
+ sea urchin
330
+ sea cucumber
331
+ wood rabbit
332
+ hare
333
+ Angora
334
+ hamster
335
+ porcupine
336
+ fox squirrel
337
+ marmot
338
+ beaver
339
+ guinea pig
340
+ sorrel
341
+ zebra
342
+ hog
343
+ wild boar
344
+ warthog
345
+ hippopotamus
346
+ ox
347
+ water buffalo
348
+ bison
349
+ ram
350
+ bighorn
351
+ ibex
352
+ hartebeest
353
+ impala
354
+ gazelle
355
+ Arabian camel
356
+ llama
357
+ weasel
358
+ mink
359
+ polecat
360
+ black-footed ferret
361
+ otter
362
+ skunk
363
+ badger
364
+ armadillo
365
+ three-toed sloth
366
+ orangutan
367
+ gorilla
368
+ chimpanzee
369
+ gibbon
370
+ siamang
371
+ guenon
372
+ patas
373
+ baboon
374
+ macaque
375
+ langur
376
+ colobus
377
+ proboscis monkey
378
+ marmoset
379
+ capuchin
380
+ howler monkey
381
+ titi
382
+ spider monkey
383
+ squirrel monkey
384
+ Madagascar cat
385
+ indri
386
+ Indian elephant
387
+ African elephant
388
+ lesser panda
389
+ giant panda
390
+ barracouta
391
+ eel
392
+ coho
393
+ rock beauty
394
+ anemone fish
395
+ sturgeon
396
+ gar
397
+ lionfish
398
+ puffer
399
+ abacus
400
+ abaya
401
+ academic gown
402
+ accordion
403
+ acoustic guitar
404
+ aircraft carrier
405
+ airliner
406
+ airship
407
+ altar
408
+ ambulance
409
+ amphibian
410
+ analog clock
411
+ apiary
412
+ apron
413
+ ashcan
414
+ assault rifle
415
+ backpack
416
+ bakery
417
+ balance beam
418
+ balloon
419
+ ballpoint
420
+ Band Aid
421
+ banjo
422
+ bannister
423
+ barbell
424
+ barber chair
425
+ barbershop
426
+ barn
427
+ barometer
428
+ barrel
429
+ barrow
430
+ baseball
431
+ basketball
432
+ bassinet
433
+ bassoon
434
+ bathing cap
435
+ bath towel
436
+ bathtub
437
+ beach wagon
438
+ beacon
439
+ beaker
440
+ bearskin
441
+ beer bottle
442
+ beer glass
443
+ bell cote
444
+ bib
445
+ bicycle-built-for-two
446
+ bikini
447
+ binder
448
+ binoculars
449
+ birdhouse
450
+ boathouse
451
+ bobsled
452
+ bolo tie
453
+ bonnet
454
+ bookcase
455
+ bookshop
456
+ bottlecap
457
+ bow
458
+ bow tie
459
+ brass
460
+ brassiere
461
+ breakwater
462
+ breastplate
463
+ broom
464
+ bucket
465
+ buckle
466
+ bulletproof vest
467
+ bullet train
468
+ butcher shop
469
+ cab
470
+ caldron
471
+ candle
472
+ cannon
473
+ canoe
474
+ can opener
475
+ cardigan
476
+ car mirror
477
+ carousel
478
+ carpenter's kit
479
+ carton
480
+ car wheel
481
+ cash machine
482
+ cassette
483
+ cassette player
484
+ castle
485
+ catamaran
486
+ CD player
487
+ cello
488
+ cellular telephone
489
+ chain
490
+ chainlink fence
491
+ chain mail
492
+ chain saw
493
+ chest
494
+ chiffonier
495
+ chime
496
+ china cabinet
497
+ Christmas stocking
498
+ church
499
+ cinema
500
+ cleaver
501
+ cliff dwelling
502
+ cloak
503
+ clog
504
+ cocktail shaker
505
+ coffee mug
506
+ coffeepot
507
+ coil
508
+ combination lock
509
+ computer keyboard
510
+ confectionery
511
+ container ship
512
+ convertible
513
+ corkscrew
514
+ cornet
515
+ cowboy boot
516
+ cowboy hat
517
+ cradle
518
+ crane
519
+ crash helmet
520
+ crate
521
+ crib
522
+ Crock Pot
523
+ croquet ball
524
+ crutch
525
+ cuirass
526
+ dam
527
+ desk
528
+ desktop computer
529
+ dial telephone
530
+ diaper
531
+ digital clock
532
+ digital watch
533
+ dining table
534
+ dishrag
535
+ dishwasher
536
+ disk brake
537
+ dock
538
+ dogsled
539
+ dome
540
+ doormat
541
+ drilling platform
542
+ drum
543
+ drumstick
544
+ dumbbell
545
+ Dutch oven
546
+ electric fan
547
+ electric guitar
548
+ electric locomotive
549
+ entertainment center
550
+ envelope
551
+ espresso maker
552
+ face powder
553
+ feather boa
554
+ file
555
+ fireboat
556
+ fire engine
557
+ fire screen
558
+ flagpole
559
+ flute
560
+ folding chair
561
+ football helmet
562
+ forklift
563
+ fountain
564
+ fountain pen
565
+ four-poster
566
+ freight car
567
+ French horn
568
+ frying pan
569
+ fur coat
570
+ garbage truck
571
+ gasmask
572
+ gas pump
573
+ goblet
574
+ go-kart
575
+ golf ball
576
+ golfcart
577
+ gondola
578
+ gong
579
+ gown
580
+ grand piano
581
+ greenhouse
582
+ grille
583
+ grocery store
584
+ guillotine
585
+ hair slide
586
+ hair spray
587
+ half track
588
+ hammer
589
+ hamper
590
+ hand blower
591
+ hand-held computer
592
+ handkerchief
593
+ hard disc
594
+ harmonica
595
+ harp
596
+ harvester
597
+ hatchet
598
+ holster
599
+ home theater
600
+ honeycomb
601
+ hook
602
+ hoopskirt
603
+ horizontal bar
604
+ horse cart
605
+ hourglass
606
+ iPod
607
+ iron
608
+ jack-o'-lantern
609
+ jean
610
+ jeep
611
+ jersey
612
+ jigsaw puzzle
613
+ jinrikisha
614
+ joystick
615
+ kimono
616
+ knee pad
617
+ knot
618
+ lab coat
619
+ ladle
620
+ lampshade
621
+ laptop
622
+ lawn mower
623
+ lens cap
624
+ letter opener
625
+ library
626
+ lifeboat
627
+ lighter
628
+ limousine
629
+ liner
630
+ lipstick
631
+ Loafer
632
+ lotion
633
+ loudspeaker
634
+ loupe
635
+ lumbermill
636
+ magnetic compass
637
+ mailbag
638
+ mailbox
639
+ maillot
640
+ maillot
641
+ manhole cover
642
+ maraca
643
+ marimba
644
+ mask
645
+ matchstick
646
+ maypole
647
+ maze
648
+ measuring cup
649
+ medicine chest
650
+ megalith
651
+ microphone
652
+ microwave
653
+ military uniform
654
+ milk can
655
+ minibus
656
+ miniskirt
657
+ minivan
658
+ missile
659
+ mitten
660
+ mixing bowl
661
+ mobile home
662
+ Model T
663
+ modem
664
+ monastery
665
+ monitor
666
+ moped
667
+ mortar
668
+ mortarboard
669
+ mosque
670
+ mosquito net
671
+ motor scooter
672
+ mountain bike
673
+ mountain tent
674
+ mouse
675
+ mousetrap
676
+ moving van
677
+ muzzle
678
+ nail
679
+ neck brace
680
+ necklace
681
+ nipple
682
+ notebook
683
+ obelisk
684
+ oboe
685
+ ocarina
686
+ odometer
687
+ oil filter
688
+ organ
689
+ oscilloscope
690
+ overskirt
691
+ oxcart
692
+ oxygen mask
693
+ packet
694
+ paddle
695
+ paddlewheel
696
+ padlock
697
+ paintbrush
698
+ pajama
699
+ palace
700
+ panpipe
701
+ paper towel
702
+ parachute
703
+ parallel bars
704
+ park bench
705
+ parking meter
706
+ passenger car
707
+ patio
708
+ pay-phone
709
+ pedestal
710
+ pencil box
711
+ pencil sharpener
712
+ perfume
713
+ Petri dish
714
+ photocopier
715
+ pick
716
+ pickelhaube
717
+ picket fence
718
+ pickup
719
+ pier
720
+ piggy bank
721
+ pill bottle
722
+ pillow
723
+ ping-pong ball
724
+ pinwheel
725
+ pirate
726
+ pitcher
727
+ plane
728
+ planetarium
729
+ plastic bag
730
+ plate rack
731
+ plow
732
+ plunger
733
+ Polaroid camera
734
+ pole
735
+ police van
736
+ poncho
737
+ pool table
738
+ pop bottle
739
+ pot
740
+ potter's wheel
741
+ power drill
742
+ prayer rug
743
+ printer
744
+ prison
745
+ projectile
746
+ projector
747
+ puck
748
+ punching bag
749
+ purse
750
+ quill
751
+ quilt
752
+ racer
753
+ racket
754
+ radiator
755
+ radio
756
+ radio telescope
757
+ rain barrel
758
+ recreational vehicle
759
+ reel
760
+ reflex camera
761
+ refrigerator
762
+ remote control
763
+ restaurant
764
+ revolver
765
+ rifle
766
+ rocking chair
767
+ rotisserie
768
+ rubber eraser
769
+ rugby ball
770
+ rule
771
+ running shoe
772
+ safe
773
+ safety pin
774
+ saltshaker
775
+ sandal
776
+ sarong
777
+ sax
778
+ scabbard
779
+ scale
780
+ school bus
781
+ schooner
782
+ scoreboard
783
+ screen
784
+ screw
785
+ screwdriver
786
+ seat belt
787
+ sewing machine
788
+ shield
789
+ shoe shop
790
+ shoji
791
+ shopping basket
792
+ shopping cart
793
+ shovel
794
+ shower cap
795
+ shower curtain
796
+ ski
797
+ ski mask
798
+ sleeping bag
799
+ slide rule
800
+ sliding door
801
+ slot
802
+ snorkel
803
+ snowmobile
804
+ snowplow
805
+ soap dispenser
806
+ soccer ball
807
+ sock
808
+ solar dish
809
+ sombrero
810
+ soup bowl
811
+ space bar
812
+ space heater
813
+ space shuttle
814
+ spatula
815
+ speedboat
816
+ spider web
817
+ spindle
818
+ sports car
819
+ spotlight
820
+ stage
821
+ steam locomotive
822
+ steel arch bridge
823
+ steel drum
824
+ stethoscope
825
+ stole
826
+ stone wall
827
+ stopwatch
828
+ stove
829
+ strainer
830
+ streetcar
831
+ stretcher
832
+ studio couch
833
+ stupa
834
+ submarine
835
+ suit
836
+ sundial
837
+ sunglass
838
+ sunglasses
839
+ sunscreen
840
+ suspension bridge
841
+ swab
842
+ sweatshirt
843
+ swimming trunks
844
+ swing
845
+ switch
846
+ syringe
847
+ table lamp
848
+ tank
849
+ tape player
850
+ teapot
851
+ teddy
852
+ television
853
+ tennis ball
854
+ thatch
855
+ theater curtain
856
+ thimble
857
+ thresher
858
+ throne
859
+ tile roof
860
+ toaster
861
+ tobacco shop
862
+ toilet seat
863
+ torch
864
+ totem pole
865
+ tow truck
866
+ toyshop
867
+ tractor
868
+ trailer truck
869
+ tray
870
+ trench coat
871
+ tricycle
872
+ trimaran
873
+ tripod
874
+ triumphal arch
875
+ trolleybus
876
+ trombone
877
+ tub
878
+ turnstile
879
+ typewriter keyboard
880
+ umbrella
881
+ unicycle
882
+ upright
883
+ vacuum
884
+ vase
885
+ vault
886
+ velvet
887
+ vending machine
888
+ vestment
889
+ viaduct
890
+ violin
891
+ volleyball
892
+ waffle iron
893
+ wall clock
894
+ wallet
895
+ wardrobe
896
+ warplane
897
+ washbasin
898
+ washer
899
+ water bottle
900
+ water jug
901
+ water tower
902
+ whiskey jug
903
+ whistle
904
+ wig
905
+ window screen
906
+ window shade
907
+ Windsor tie
908
+ wine bottle
909
+ wing
910
+ wok
911
+ wooden spoon
912
+ wool
913
+ worm fence
914
+ wreck
915
+ yawl
916
+ yurt
917
+ web site
918
+ comic book
919
+ crossword puzzle
920
+ street sign
921
+ traffic light
922
+ book jacket
923
+ menu
924
+ plate
925
+ guacamole
926
+ consomme
927
+ hot pot
928
+ trifle
929
+ ice cream
930
+ ice lolly
931
+ French loaf
932
+ bagel
933
+ pretzel
934
+ cheeseburger
935
+ hotdog
936
+ mashed potato
937
+ head cabbage
938
+ broccoli
939
+ cauliflower
940
+ zucchini
941
+ spaghetti squash
942
+ acorn squash
943
+ butternut squash
944
+ cucumber
945
+ artichoke
946
+ bell pepper
947
+ cardoon
948
+ mushroom
949
+ Granny Smith
950
+ strawberry
951
+ orange
952
+ lemon
953
+ fig
954
+ pineapple
955
+ banana
956
+ jackfruit
957
+ custard apple
958
+ pomegranate
959
+ hay
960
+ carbonara
961
+ chocolate sauce
962
+ dough
963
+ meat loaf
964
+ pizza
965
+ potpie
966
+ burrito
967
+ red wine
968
+ espresso
969
+ cup
970
+ eggnog
971
+ alp
972
+ bubble
973
+ cliff
974
+ coral reef
975
+ geyser
976
+ lakeside
977
+ promontory
978
+ sandbar
979
+ seashore
980
+ valley
981
+ volcano
982
+ ballplayer
983
+ groom
984
+ scuba diver
985
+ rapeseed
986
+ daisy
987
+ yellow lady's slipper
988
+ corn
989
+ acorn
990
+ hip
991
+ buckeye
992
+ coral fungus
993
+ agaric
994
+ gyromitra
995
+ stinkhorn
996
+ earthstar
997
+ hen-of-the-woods
998
+ bolete
999
+ ear
1000
+ toilet tissue
model.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from torch.utils.data import DataLoader
3
+ from torchvision import transforms
4
+ import numpy as np
5
+ import pandas as pd
6
+ import os
7
+ import cv2
8
+ from sklearn.utils import shuffle
9
+ from sklearn.model_selection import train_test_split
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torchvision.transforms as transforms
14
+ import torch
15
+ import torch.nn as nn
16
+
17
+
18
+ class HybridCNNViT(nn.Module):
19
+ def __init__(self, in_channels: int, num_classes: int):
20
+ super(HybridCNNViT, self).__init__()
21
+
22
+ self.conv1 = nn.Conv2d(
23
+ in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
24
+ self.bn1 = nn.BatchNorm2d(64)
25
+ self.relu = nn.ReLU(inplace=True)
26
+
27
+ self.conv2 = nn.Conv2d(64, 128, kernel_size=3,
28
+ stride=1, padding=1, bias=False)
29
+ self.bn2 = nn.BatchNorm2d(128)
30
+
31
+ self.conv3 = nn.Conv2d(128, 128, kernel_size=3,
32
+ stride=1, padding=1, bias=False)
33
+ self.bn3 = nn.BatchNorm2d(128)
34
+
35
+ self.conv4 = nn.Conv2d(128, 256, kernel_size=3,
36
+ stride=2, padding=1, bias=False)
37
+ self.bn4 = nn.BatchNorm2d(256)
38
+
39
+ self.conv5 = nn.Conv2d(256, 256, kernel_size=3,
40
+ stride=1, padding=1, bias=False)
41
+ self.bn5 = nn.BatchNorm2d(256)
42
+
43
+ self.conv6 = nn.Conv2d(256, 512, kernel_size=3,
44
+ stride=1, padding=1, bias=False)
45
+ self.bn6 = nn.BatchNorm2d(512)
46
+
47
+ self.conv7 = nn.Conv2d(512, 512, kernel_size=3,
48
+ stride=2, padding=1, bias=False)
49
+ self.bn7 = nn.BatchNorm2d(512)
50
+
51
+ # Optional MaxPooling (can be removed if strictly no max pooling)
52
+ self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
53
+
54
+ self.classifier_conv = nn.Conv2d(
55
+ 512, num_classes, kernel_size=1, stride=1, padding=0, bias=False)
56
+
57
+ self.classifier = nn.Sequential(
58
+ nn.AdaptiveAvgPool2d((1, 1)),
59
+ nn.Flatten(),
60
+ nn.Dropout(0.5)
61
+ )
62
+
63
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
64
+ x = self.relu(self.bn1(self.conv1(x)))
65
+ x = self.relu(self.bn2(self.conv2(x)))
66
+ x = self.relu(self.bn3(self.conv3(x)))
67
+ x = self.relu(self.bn4(self.conv4(x)))
68
+ x = self.relu(self.bn5(self.conv5(x)))
69
+ x = self.relu(self.bn6(self.conv6(x)))
70
+ x = self.relu(self.bn7(self.conv7(x)))
71
+
72
+ x = self.maxpool(x) # Comment this line if no max pooling is needed
73
+
74
+ x = self.classifier_conv(x)
75
+ x = self.classifier(x)
76
+
77
+ return x
78
+
79
+
80
+ def load_and_pad_single_image(image_path, img_size=(224, 224)):
81
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
82
+ img = cv2.imread(image_path)
83
+ if img is None:
84
+ raise ValueError(f"Could not read image: {image_path}")
85
+ img = cv2.resize(img, img_size)
86
+ return np.array(img)
87
+
88
+
89
+ def check_file(image_path):
90
+ # image_path = "d/Control-Axial/C-A (2).png"
91
+
92
+ # Load and preprocess the single image
93
+ image = load_and_pad_single_image(image_path)
94
+ image = np.expand_dims(image, axis=0) # Convert to batch format
95
+
96
+ # Duplicate the image 10 times
97
+ data = np.repeat(image, 10, axis=0)
98
+
99
+ # Normalize and transform the image
100
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
101
+ transform = transforms.Compose([
102
+ transforms.ToTensor(),
103
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
104
+ 0.229, 0.224, 0.225])
105
+ ])
106
+
107
+ data = torch.tensor(data, dtype=torch.float32).permute(
108
+ 0, 3, 1, 2).to(device)
109
+ # Placeholder labels for 10 images
110
+ labels = torch.tensor([0] * 10, dtype=torch.long).to(device)
111
+
112
+ data, labels = shuffle(data, labels, random_state=42)
113
+
114
+ train_data, test_data, train_labels, test_labels = train_test_split(
115
+ data, labels, test_size=0.2, random_state=42
116
+ )
117
+
118
+ train_labels = torch.tensor(train_labels, dtype=torch.long)
119
+ test_labels = torch.tensor(test_labels, dtype=torch.long)
120
+
121
+ batch_size = 1 # Since we are working with a single image
122
+ train_dataset = list(zip(train_data, train_labels))
123
+ test_dataset = list(zip(test_data, test_labels))
124
+ test_loader = DataLoader(
125
+ test_dataset, batch_size=batch_size, shuffle=False)
126
+
127
+ # Simple test with a model
128
+ output = ""
129
+
130
+ def test_model(model, test_loader, device):
131
+ global output
132
+ model.to(device)
133
+ model.eval()
134
+ with torch.no_grad():
135
+ for images, labels in test_loader:
136
+ images, labels = images.to(device), labels.to(device)
137
+ outputs = model(images)
138
+ _, predicted = torch.max(outputs.data, 1)
139
+ output = predicted
140
+ # Convert logits to probabilities
141
+ probabilities = F.softmax(outputs, dim=1)
142
+ # Get confidence score and prediction
143
+ confidence, d = torch.max(probabilities, 1)
144
+ print(confidence)
145
+ return predicted, confidence
146
+
147
+ def remove_module_from_checkpoint(checkpoint):
148
+ new_state_dict = {}
149
+ for key, value in checkpoint["model_state_dict"].items():
150
+ new_key = key.replace("module.", "")
151
+ new_state_dict[new_key] = value
152
+ checkpoint["model_state_dict"] = new_state_dict
153
+ return checkpoint
154
+
155
+ model = HybridCNNViT(3, 2)
156
+ checkpoint = torch.load(
157
+ "/home/user/app/checkpoint32.pth", weights_only=False, map_location=torch.device('cpu'))
158
+ checkpoint = remove_module_from_checkpoint(checkpoint)
159
+ model.load_state_dict(checkpoint['model_state_dict'])
160
+ model.eval()
161
+ model.to(device)
162
+ model = nn.DataParallel(model)
163
+ output, confidence = test_model(model, test_loader, device)
164
+ return "No ms detected" if output.item() == 0 else "MS Detected", confidence.item()
requirements.txt CHANGED
@@ -22,3 +22,7 @@ openai
22
  fpdf
23
  cloudinary
24
  PyPDF2
 
 
 
 
 
22
  fpdf
23
  cloudinary
24
  PyPDF2
25
+ scikit-learn
26
+ pandas
27
+ gdown
28
+ nibabel
temp.py CHANGED
@@ -17,7 +17,8 @@ import torch
17
  app = Flask(__name__)
18
  cfg = None
19
  # Google Drive file URL
20
- GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=18aEDo-kWOBhg8mAhnbpFkuM6bmmrBH4E" # Replace 'your-file-id' with the actual file ID from Google Drive
 
21
  LOCAL_MODEL_PATH = "model_final.pth"
22
 
23
 
@@ -25,8 +26,8 @@ def download_file_from_google_drive(id, destination):
25
  gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)
26
 
27
 
28
- file_id = "18aEDo-kWOBhg8mAhnbpFkuM6bmmrBH4E"
29
- destination = "model_final.pth"
30
  download_file_from_google_drive(file_id, destination)
31
 
32
 
@@ -109,7 +110,8 @@ def upload():
109
  if j in merged_boxes:
110
  continue
111
  iou = box_iou(
112
- torch.tensor(boxes[i]).unsqueeze(0), torch.tensor(boxes[j]).unsqueeze(0)
 
113
  ).item()
114
  if iou > iou_threshold:
115
  merged_boxes.add(j)
@@ -150,8 +152,6 @@ def fetchImage():
150
  image = skio.imread(file)
151
  image_np = image
152
 
153
-
154
-
155
  return jsonify(response)
156
 
157
 
 
17
  app = Flask(__name__)
18
  cfg = None
19
  # Google Drive file URL
20
+ # Replace 'your-file-id' with the actual file ID from Google Drive
21
+ GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
22
  LOCAL_MODEL_PATH = "model_final.pth"
23
 
24
 
 
26
  gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)
27
 
28
 
29
+ file_id = "1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
30
+ destination = "checkpoint32.pth"
31
  download_file_from_google_drive(file_id, destination)
32
 
33
 
 
110
  if j in merged_boxes:
111
  continue
112
  iou = box_iou(
113
+ torch.tensor(boxes[i]).unsqueeze(
114
+ 0), torch.tensor(boxes[j]).unsqueeze(0)
115
  ).item()
116
  if iou > iou_threshold:
117
  merged_boxes.add(j)
 
152
  image = skio.imread(file)
153
  image_np = image
154
 
 
 
155
  return jsonify(response)
156
 
157
 
test.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def is_mri_image(image_path):
6
+ img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
7
+
8
+ if img is None:
9
+ return False # Invalid image
10
+
11
+ # Apply Canny edge detection
12
+ edges = cv2.Canny(img, 50, 150)
13
+
14
+ # Calculate edge density (MRI images have high edge presence)
15
+ edge_density = np.sum(edges > 0) / edges.size
16
+ print(edge_density)
17
+ return edge_density > 0.05 # Threshold from MRI dataset
18
+
19
+
20
+ # Test on an MRI or non-MRI image
21
+ print(is_mri_image("a.png"))