from flask import Flask, request, jsonify, render_template from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor from detectron2.data import MetadataCatalog from detectron2.utils.visualizer import Visualizer, ColorMode import numpy as np from PIL import Image import io import os import requests import gdown from skimage import io # Initialize Flask app app = Flask(__name__) cfg = None # Google Drive file URL GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=18aEDo-kWOBhg8mAhnbpFkuM6bmmrBH4E" # Replace 'your-file-id' with the actual file ID from Google Drive LOCAL_MODEL_PATH = "model_final.pth" def download_file_from_google_drive(id, destination): gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False) file_id = "18aEDo-kWOBhg8mAhnbpFkuM6bmmrBH4E" destination = "model_final.pth" download_file_from_google_drive(file_id, destination) # Download model from Google Drive if not already present locally def download_model(): if not os.path.exists(LOCAL_MODEL_PATH): response = requests.get(GDRIVE_MODEL_URL, stream=True) if response.status_code == 200: with open(LOCAL_MODEL_PATH, "wb") as f: f.write(response.content) else: raise Exception( f"Failed to download model from Google Drive: {response.status_code}" ) # Configuration and model setup def setup_model(model_path): global cfg cfg = get_cfg() cfg.merge_from_file("config.yaml") # Update with the config file path cfg.MODEL.WEIGHTS = model_path cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.DEVICE = "cpu" # Use "cuda" for GPU return DefaultPredictor(cfg) # Ensure model is available predictor = setup_model(LOCAL_MODEL_PATH) # Define expected parts and costs expected_parts = ["headlamp", "rear_bumper", "door", "hood", "front_bumper"] cost_dict = { "headlamp": 300, "rear_bumper": 250, "door": 200, "hood": 220, "front_bumper": 250, "other": 150, } @app.route("/") def home(): return render_template("index.html") @app.route("/upload", methods=["POST"]) def upload(): if "file" not in request.files: return jsonify({"error": "No file uploaded"}), 400 file = request.files["file"] if file.filename == "": return jsonify({"error": "No file selected"}), 400 # Load image image = io.imread(file) image_np = image # Run model prediction outputs = predictor(image_np) instances = outputs["instances"].to("cpu") class_names = MetadataCatalog.get(cfg.DATASETS.TEST[0]).thing_classes # Initialize total cost total_cost = 0 damage_details = [] for j in range(len(instances)): class_id = instances.pred_classes[j].item() damaged_part = ( class_names[class_id] if class_id < len(class_names) else "unknown" ) if damaged_part not in expected_parts: damaged_part = "other" repair_cost = cost_dict.get(damaged_part, cost_dict["other"]) total_cost += repair_cost damage_details.append({"part": damaged_part, "cost_usd": repair_cost}) response = {"damages": damage_details, "total_cost": total_cost} return jsonify(response) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)