from torch.utils.data import DataLoader from torchvision import transforms import numpy as np import pandas as pd import os import cv2 from sklearn.utils import shuffle from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torch import torch.nn as nn class HybridCNNViT(nn.Module): def __init__(self, in_channels: int, num_classes: int): super(HybridCNNViT, self).__init__() self.conv1 = nn.Conv2d( in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(256) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(512) self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) # Optional MaxPooling (can be removed if strictly no max pooling) self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.classifier_conv = nn.Conv2d( 512, num_classes, kernel_size=1, stride=1, padding=0, bias=False) self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Dropout(0.5) ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) x = self.relu(self.bn3(self.conv3(x))) x = self.relu(self.bn4(self.conv4(x))) x = self.relu(self.bn5(self.conv5(x))) x = self.relu(self.bn6(self.conv6(x))) x = self.relu(self.bn7(self.conv7(x))) x = self.maxpool(x) # Comment this line if no max pooling is needed x = self.classifier_conv(x) x = self.classifier(x) return x def load_and_pad_single_image(image_path, img_size=(224, 224)): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") img = cv2.imread(image_path) if img is None: raise ValueError(f"Could not read image: {image_path}") img = cv2.resize(img, img_size) return np.array(img) def check_file(image_path): # image_path = "d/Control-Axial/C-A (2).png" # Load and preprocess the single image image = load_and_pad_single_image(image_path) image = np.expand_dims(image, axis=0) # Convert to batch format # Duplicate the image 10 times data = np.repeat(image, 10, axis=0) # Normalize and transform the image device = torch.device("cuda" if torch.cuda.is_available() else "cpu") transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[ 0.229, 0.224, 0.225]) ]) data = torch.tensor(data, dtype=torch.float32).permute( 0, 3, 1, 2).to(device) # Placeholder labels for 10 images labels = torch.tensor([0] * 10, dtype=torch.long).to(device) data, labels = shuffle(data, labels, random_state=42) train_data, test_data, train_labels, test_labels = train_test_split( data, labels, test_size=0.2, random_state=42 ) train_labels = torch.tensor(train_labels, dtype=torch.long) test_labels = torch.tensor(test_labels, dtype=torch.long) batch_size = 1 # Since we are working with a single image train_dataset = list(zip(train_data, train_labels)) test_dataset = list(zip(test_data, test_labels)) test_loader = DataLoader( test_dataset, batch_size=batch_size, shuffle=False) # Simple test with a model output = "" def test_model(model, test_loader, device): global output model.to(device) model.eval() with torch.no_grad(): for images, labels in test_loader: images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) output = predicted # Convert logits to probabilities probabilities = F.softmax(outputs, dim=1) # Get confidence score and prediction confidence, d = torch.max(probabilities, 1) print(confidence) return predicted, confidence def remove_module_from_checkpoint(checkpoint): new_state_dict = {} for key, value in checkpoint["model_state_dict"].items(): new_key = key.replace("module.", "") new_state_dict[new_key] = value checkpoint["model_state_dict"] = new_state_dict return checkpoint model = HybridCNNViT(3, 2) checkpoint = torch.load( "/home/user/app/checkpoint32.pth", weights_only=False, map_location=torch.device('cpu')) checkpoint = remove_module_from_checkpoint(checkpoint) model.load_state_dict(checkpoint['model_state_dict']) model.eval() model.to(device) model = nn.DataParallel(model) output, confidence = test_model(model, test_loader, device) return "No ms detected" if output.item() == 0 else "MS Detected", confidence.item()