Spaces:
Runtime error
Runtime error
| from LLM_package import GeminiInference | |
| import json | |
| class ObjectDetector: | |
| def __init__(self, model_path): | |
| self.model = GeminiInference() | |
| self.prompt_objects=None | |
| self.text=None | |
| self.prompt= f""" | |
| Detect all {self.prompt_objects} in the image. The box_2d should be [ymin, xmin, ymax, xmax] normalized to 0-1000. | |
| Please provide the response as a JSON array of objects, where each object has a 'label' and 'box_2d' field. | |
| Example: | |
| [ | |
| {{"label": "face", "box_2d": [100, 200, 300, 400]}}, | |
| {{"label": "license_plate", "box_2d": [500, 600, 700, 800]}} | |
| ] | |
| """ | |
| def detect_objects(self, image_path): | |
| detected_objects_norm_0_1= self.model.parse_response(self.model.get_response(image_path, self.prompt)) | |
| return detected_objects_norm_0_1 | |
| """ | |
| Detects the danger level of the image. | |
| """ | |
| def detect_danger_level(self, image_path): | |
| analysis_prompt = f""" | |
| 画像の個人情報漏洩リスクを分析し、厳密にJSON形式で返答してください。なおこの時、資料があれば、資料を参考にしてください: | |
| {{ | |
| "risk_level": "high|medium|low", | |
| "risk_reason": "リスクの具体的理由", | |
| "objects_to_remove": ["消去すべきオブジェクトリスト(英語で、例: 'face', 'license_plate')"] | |
| }} | |
| <資料> | |
| {self.text if self.text else "なし"} | |
| </資料> | |
| """ | |
| response = self.model.parse(self.model.get_response(image_path, analysis_prompt)) | |
| print(f"Response: {response}") | |
| return response |