Spaces:
Running
Running
syurein
commited on
Commit
·
68c46ce
1
Parent(s):
fed06ef
search機能の実装
Browse files- __pycache__/LLM_package.cpython-312.pyc +0 -0
- __pycache__/search.cpython-312.pyc +0 -0
- app.py +30 -9
- requirements.txt +1 -1
- search.py +72 -34
- test.py +5 -2
__pycache__/LLM_package.cpython-312.pyc
CHANGED
Binary files a/__pycache__/LLM_package.cpython-312.pyc and b/__pycache__/LLM_package.cpython-312.pyc differ
|
|
__pycache__/search.cpython-312.pyc
CHANGED
Binary files a/__pycache__/search.cpython-312.pyc and b/__pycache__/search.cpython-312.pyc differ
|
|
app.py
CHANGED
@@ -69,6 +69,8 @@ import numpy as np
|
|
69 |
from datetime import datetime
|
70 |
from ultralytics import YOLO
|
71 |
from PIL import Image
|
|
|
|
|
72 |
app = FastAPI()
|
73 |
# CORSミドルウェアの追加
|
74 |
app.add_middleware(
|
@@ -229,6 +231,25 @@ def create_mask(image, x1, y1, x2, y2):
|
|
229 |
|
230 |
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def llm_to_process_image_simple(risk_level, image_path, point1, point2, thresholds=None):
|
233 |
print(risk_level, image_path, point1, point2, thresholds)
|
234 |
print('point1,point2', point1, point2)
|
@@ -262,8 +283,8 @@ def llm_to_process_image_simple(risk_level, image_path, point1, point2, threshol
|
|
262 |
return save_dir + debug_image_path
|
263 |
|
264 |
|
265 |
-
|
266 |
-
def llm_to_process_image_simple_auto(risk_level, image_path, point1, point2, thresholds=None):
|
267 |
print(risk_level, image_path, point1, point2, thresholds)
|
268 |
print('point1,point2', point1, point2)
|
269 |
GEMINI_API_KEY=os.getenv('GEMINI_API_KEY')
|
@@ -273,6 +294,13 @@ def llm_to_process_image_simple_auto(risk_level, image_path, point1, point2, thr
|
|
273 |
response=Objectdetector.detect_auto(image_path)
|
274 |
print(response["objects_to_remove"])
|
275 |
Objectdetector.prompt_objects=response["objects_to_remove"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
# 画像の読み込みとRGB変換
|
277 |
print(f"Objectdetector.prompt_objects: {Objectdetector.prompt_objects}")
|
278 |
image = cv2.imread(image_path)
|
@@ -1010,13 +1038,6 @@ async def create_mask_sum_auto(image: UploadFile = File(...), risk_level: int =
|
|
1010 |
|
1011 |
|
1012 |
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
# カスケードファイルの読み込み (顔検出)
|
1021 |
#face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
1022 |
|
|
|
69 |
from datetime import datetime
|
70 |
from ultralytics import YOLO
|
71 |
from PIL import Image
|
72 |
+
from search import WebScraper
|
73 |
+
|
74 |
app = FastAPI()
|
75 |
# CORSミドルウェアの追加
|
76 |
app.add_middleware(
|
|
|
231 |
|
232 |
|
233 |
|
234 |
+
async def search_llm():
|
235 |
+
scraper = WebScraper(headless=True) # UIなしで実行
|
236 |
+
|
237 |
+
# 個人情報流出に関する事例を検索し、上位2件のクリーンなコンテンツを取得
|
238 |
+
personal_breach_docs = await scraper.get_processed_documents(
|
239 |
+
search_query="個人情報流出 事例 SNS",
|
240 |
+
num_search_results=10
|
241 |
+
)
|
242 |
+
return personal_breach_docs["cleaned_html_content"]
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
def llm_to_process_image_simple(risk_level, image_path, point1, point2, thresholds=None):
|
254 |
print(risk_level, image_path, point1, point2, thresholds)
|
255 |
print('point1,point2', point1, point2)
|
|
|
283 |
return save_dir + debug_image_path
|
284 |
|
285 |
|
286 |
+
import asyncio
|
287 |
+
async def llm_to_process_image_simple_auto(risk_level, image_path, point1, point2, thresholds=None):
|
288 |
print(risk_level, image_path, point1, point2, thresholds)
|
289 |
print('point1,point2', point1, point2)
|
290 |
GEMINI_API_KEY=os.getenv('GEMINI_API_KEY')
|
|
|
294 |
response=Objectdetector.detect_auto(image_path)
|
295 |
print(response["objects_to_remove"])
|
296 |
Objectdetector.prompt_objects=response["objects_to_remove"]
|
297 |
+
# 個人情報流出に関する事例を検索し、上位2件のクリーンなコンテンツを取得
|
298 |
+
scraper = WebScraper(headless=True)
|
299 |
+
personal_breach_docs = asyncio.run(await scraper.get_processed_documents(
|
300 |
+
search_query="個人情報流出 事例 SNS",
|
301 |
+
num_search_results=10
|
302 |
+
))
|
303 |
+
Objectdetector.text=personal_breach_docs["cleaned_html_content"]
|
304 |
# 画像の読み込みとRGB変換
|
305 |
print(f"Objectdetector.prompt_objects: {Objectdetector.prompt_objects}")
|
306 |
image = cv2.imread(image_path)
|
|
|
1038 |
|
1039 |
|
1040 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1041 |
# カスケードファイルの読み込み (顔検出)
|
1042 |
#face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
1043 |
|
requirements.txt
CHANGED
@@ -73,4 +73,4 @@ supervision
|
|
73 |
onnxruntime
|
74 |
google-genai
|
75 |
python-dotenv
|
76 |
-
|
|
|
73 |
onnxruntime
|
74 |
google-genai
|
75 |
python-dotenv
|
76 |
+
|
search.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import asyncio
|
2 |
-
from playwright.async_api import async_playwright, Page, Browser
|
3 |
from bs4 import BeautifulSoup
|
4 |
-
from bs4.element import Comment
|
5 |
from urllib.parse import urlparse, parse_qs
|
6 |
from typing import List, Dict, Optional
|
7 |
|
@@ -19,23 +19,31 @@ class WebScraper:
|
|
19 |
"""
|
20 |
self.headless = headless
|
21 |
self.default_timeout = default_timeout
|
22 |
-
self._browser: Optional[Browser] = None
|
|
|
23 |
|
24 |
async def _launch_browser(self) -> Browser:
|
25 |
-
"""
|
|
|
|
|
26 |
if not self._browser or not self._browser.is_connected():
|
27 |
-
self.
|
|
|
|
|
28 |
return self._browser
|
29 |
|
30 |
async def _close_browser(self):
|
31 |
-
"""
|
32 |
if self._browser and self._browser.is_connected():
|
33 |
await self._browser.close()
|
34 |
self._browser = None
|
|
|
|
|
|
|
35 |
|
36 |
async def _get_new_page(self) -> Page:
|
37 |
"""新しいページ(タブ)を作成します。"""
|
38 |
-
browser = await self._launch_browser()
|
39 |
page = await browser.new_page()
|
40 |
page.set_default_timeout(self.default_timeout)
|
41 |
return page
|
@@ -45,37 +53,50 @@ class WebScraper:
|
|
45 |
DuckDuckGoで指定されたクエリを検索し、上位N件の検索結果(タイトルとURL)を返します。
|
46 |
"""
|
47 |
results = []
|
48 |
-
page: Optional[Page] = None
|
|
|
49 |
try:
|
50 |
page = await self._get_new_page()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
print(f"DuckDuckGoで '{query}' を検索中...")
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
if i >= num_results:
|
63 |
-
break
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
url = await url_element.get_attribute("href") if url_element else "URLなし"
|
70 |
|
71 |
-
# DuckDuckGo
|
72 |
-
if url
|
73 |
parsed_url = urlparse(url)
|
74 |
-
|
|
|
75 |
decoded_url = parse_qs(parsed_url.query).get('uddg', [''])[0]
|
76 |
url = decoded_url
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
except Exception as e:
|
80 |
print(f"DuckDuckGo検索中にエラーが発生しました: {e}")
|
81 |
finally:
|
@@ -91,7 +112,8 @@ class WebScraper:
|
|
91 |
try:
|
92 |
page = await self._get_new_page()
|
93 |
print(f" URL: {url} のコンテンツを取得中...")
|
94 |
-
|
|
|
95 |
return await page.content()
|
96 |
except Exception as e:
|
97 |
print(f" URL: {url} のコンテンツ取得中にエラーが発生しました: {e}")
|
@@ -121,6 +143,7 @@ class WebScraper:
|
|
121 |
|
122 |
# 複数の連続する改行を1つに減らす
|
123 |
cleaned_text = soup.get_text(separator='\n', strip=True)
|
|
|
124 |
cleaned_text_lines = [line.strip() for line in cleaned_text.splitlines() if line.strip()]
|
125 |
return '\n'.join(cleaned_text_lines)
|
126 |
|
@@ -138,11 +161,8 @@ class WebScraper:
|
|
138 |
"""
|
139 |
processed_documents = []
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
# ブラウザを一度だけ起動し、インスタンス変数に保持
|
144 |
-
self._browser = await p.chromium.launch(headless=self.headless)
|
145 |
-
|
146 |
top_results = await self.search_duckduckgo(search_query, num_search_results)
|
147 |
|
148 |
if top_results:
|
@@ -167,9 +187,27 @@ class WebScraper:
|
|
167 |
print(" クリーンなコンテンツを取得できませんでした。")
|
168 |
else:
|
169 |
print("検索結果が見つからなかったため、処理をスキップします。")
|
170 |
-
|
171 |
-
|
|
|
172 |
|
173 |
return processed_documents
|
174 |
|
175 |
# クラスの使用例
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import asyncio
|
2 |
+
from playwright.async_api import async_playwright, Page, Browser, Playwright
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
from bs4.element import Comment
|
5 |
from urllib.parse import urlparse, parse_qs
|
6 |
from typing import List, Dict, Optional
|
7 |
|
|
|
19 |
"""
|
20 |
self.headless = headless
|
21 |
self.default_timeout = default_timeout
|
22 |
+
self._browser: Optional[Browser] = None
|
23 |
+
self._playwright_instance: Optional[Playwright] = None # Playwrightインスタンスを保持
|
24 |
|
25 |
async def _launch_browser(self) -> Browser:
|
26 |
+
"""Playwrightを起動し、ブラウザを立ち上げます。
|
27 |
+
既にブラウザが起動していればそれを再利用します。
|
28 |
+
"""
|
29 |
if not self._browser or not self._browser.is_connected():
|
30 |
+
if self._playwright_instance is None:
|
31 |
+
self._playwright_instance = await async_playwright().start()
|
32 |
+
self._browser = await self._playwright_instance.chromium.launch(headless=self.headless)
|
33 |
return self._browser
|
34 |
|
35 |
async def _close_browser(self):
|
36 |
+
"""ブラウザを閉じ、Playwrightインスタンスも停止します。"""
|
37 |
if self._browser and self._browser.is_connected():
|
38 |
await self._browser.close()
|
39 |
self._browser = None
|
40 |
+
if self._playwright_instance:
|
41 |
+
await self._playwright_instance.stop()
|
42 |
+
self._playwright_instance = None
|
43 |
|
44 |
async def _get_new_page(self) -> Page:
|
45 |
"""新しいページ(タブ)を作成します。"""
|
46 |
+
browser = await self._launch_browser() # ブラウザが起動または取得される
|
47 |
page = await browser.new_page()
|
48 |
page.set_default_timeout(self.default_timeout)
|
49 |
return page
|
|
|
53 |
DuckDuckGoで指定されたクエリを検索し、上位N件の検索結果(タイトルとURL)を返します。
|
54 |
"""
|
55 |
results = []
|
56 |
+
page: Optional[Page] = None
|
57 |
+
|
58 |
try:
|
59 |
page = await self._get_new_page()
|
60 |
+
"""Playwrightのステルス技術を適用し、ボット検出を回避します。"""
|
61 |
+
await page.evaluate("""Object.defineProperty(navigator, 'webdriver', { get: () => false });""")
|
62 |
+
await page.evaluate("""Object.defineProperty(navigator, 'plugins', { get: () => [1, 2, 3, 4, 5] });""")
|
63 |
+
await page.evaluate("""Object.defineProperty(navigator, 'languages', { get: () => ['en-US', 'en'] });""")
|
64 |
+
await page.evaluate("""window.chrome = { runtime: {}, loadTimes: function() {}, csi: function() {}, app: {} };""")
|
65 |
+
await page.evaluate("""Object.defineProperty(navigator.permissions, 'query', { enumerable: true, configurable: true, writable: true, value: async (parameters) => ({ state: 'prompt' }) });""")
|
66 |
+
|
67 |
print(f"DuckDuckGoで '{query}' を検索中...")
|
68 |
+
# DuckDuckGoの検索URLは一般的に `?q=` パラメータを使用します
|
69 |
+
await page.goto(f"https://duckduckgo.com/?q={query}")
|
70 |
|
71 |
+
# 検索結果のタイトルリンク要素を特定するセレクタ
|
72 |
+
# DuckDuckGoのHTML構造は変更される可能性があるため、適宜調整が必要
|
73 |
+
# 現在の一般的なセレクタは 'a[data-testid="result-title-link"]'
|
74 |
+
await page.wait_for_selector('h2 > a', timeout=10000)
|
75 |
|
76 |
+
# 検索結果のタイトルリンク要素を取得 (await は不要、Locatorオブジェクトを返す)
|
77 |
+
search_links = page.locator('h2 > a')
|
78 |
|
79 |
+
# 取得する結果の数を制限
|
80 |
+
for i in range(min(num_results, await search_links.count())):
|
81 |
+
link_element = search_links.nth(i)
|
|
|
|
|
82 |
|
83 |
+
# タイトルはリンク要素のテキストコンテンツ
|
84 |
+
title = await link_element.text_content()
|
85 |
+
# URLはリンク要素のhref属性
|
86 |
+
url = await link_element.get_attribute("href")
|
|
|
87 |
|
88 |
+
# DuckDuckGoのリダイレクトURLのデコードとクリーンアップ
|
89 |
+
if url:
|
90 |
parsed_url = urlparse(url)
|
91 |
+
# DuckDuckGoのリダイレクトURLかどうかをチェック
|
92 |
+
if parsed_url.netloc == 'duckduckgo.com' and parsed_url.path == '/l/':
|
93 |
decoded_url = parse_qs(parsed_url.query).get('uddg', [''])[0]
|
94 |
url = decoded_url
|
95 |
|
96 |
+
# 結果を追加する前に、タイトルとURLが有効か軽くチェック
|
97 |
+
if title and url and title.strip() != "" and url.strip() != "":
|
98 |
+
results.append({"title": title.strip(), "url": url.strip()})
|
99 |
+
|
100 |
except Exception as e:
|
101 |
print(f"DuckDuckGo検索中にエラーが発生しました: {e}")
|
102 |
finally:
|
|
|
112 |
try:
|
113 |
page = await self._get_new_page()
|
114 |
print(f" URL: {url} のコンテンツを取得中...")
|
115 |
+
# 'domcontentloaded' は 'load' よりも高速な場合が多い
|
116 |
+
await page.goto(url, wait_until='domcontentloaded')
|
117 |
return await page.content()
|
118 |
except Exception as e:
|
119 |
print(f" URL: {url} のコンテンツ取得中にエラーが発生しました: {e}")
|
|
|
143 |
|
144 |
# 複数の連続する改行を1つに減らす
|
145 |
cleaned_text = soup.get_text(separator='\n', strip=True)
|
146 |
+
# 空行を削除し、各行をトリム
|
147 |
cleaned_text_lines = [line.strip() for line in cleaned_text.splitlines() if line.strip()]
|
148 |
return '\n'.join(cleaned_text_lines)
|
149 |
|
|
|
161 |
"""
|
162 |
processed_documents = []
|
163 |
|
164 |
+
# クラスのインスタンスでブラウザのライフサイクルを管理
|
165 |
+
try:
|
|
|
|
|
|
|
166 |
top_results = await self.search_duckduckgo(search_query, num_search_results)
|
167 |
|
168 |
if top_results:
|
|
|
187 |
print(" クリーンなコンテンツを取得できませんでした。")
|
188 |
else:
|
189 |
print("検索結果が見つからなかったため、処理をスキップします。")
|
190 |
+
finally:
|
191 |
+
# すべての処理が完了したらブラウザを閉じる
|
192 |
+
await self._close_browser()
|
193 |
|
194 |
return processed_documents
|
195 |
|
196 |
# クラスの使用例
|
197 |
+
async def main():
|
198 |
+
scraper = WebScraper(headless=False) # デバッグのためにheadless=Falseにしても良い
|
199 |
+
query = "個人情報流出 事例"
|
200 |
+
documents = await scraper.get_processed_documents(query, num_search_results=2)
|
201 |
+
|
202 |
+
if documents:
|
203 |
+
print("\n--- 処理されたドキュメント ---")
|
204 |
+
for doc in documents:
|
205 |
+
print(f"タイトル: {doc['title']}")
|
206 |
+
print(f"URL: {doc['original_url']}")
|
207 |
+
# print(f"コンテンツの長さ: {len(doc['cleaned_html_content'])} 文字")
|
208 |
+
# print(f"コンテンツの一部: {doc['cleaned_html_content'][:200]}...\n")
|
209 |
+
else:
|
210 |
+
print("処理されたドキュメントはありませんでした。")
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
asyncio.run(main())
|
test.py
CHANGED
@@ -3,11 +3,13 @@ import os
|
|
3 |
from dotenv import load_dotenv
|
4 |
import numpy as np
|
5 |
import cv2
|
|
|
|
|
6 |
from PIL import Image
|
7 |
from search import WebScraper
|
8 |
load_dotenv(dotenv_path='../.env')
|
9 |
async def main():
|
10 |
-
scraper = WebScraper(headless=
|
11 |
|
12 |
# 個人情報流出に関する事例を検索し、上位2件のクリーンなコンテンツを取得
|
13 |
personal_breach_docs = await scraper.get_processed_documents(
|
@@ -24,4 +26,5 @@ async def main():
|
|
24 |
print("-" * 30)
|
25 |
else:
|
26 |
print("処理されたドキュメントはありませんでした。")
|
27 |
-
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
+
import asyncio
|
7 |
+
|
8 |
from PIL import Image
|
9 |
from search import WebScraper
|
10 |
load_dotenv(dotenv_path='../.env')
|
11 |
async def main():
|
12 |
+
scraper = WebScraper(headless=False) # UIなしで実行
|
13 |
|
14 |
# 個人情報流出に関する事例を検索し、上位2件のクリーンなコンテンツを取得
|
15 |
personal_breach_docs = await scraper.get_processed_documents(
|
|
|
26 |
print("-" * 30)
|
27 |
else:
|
28 |
print("処理されたドキュメントはありませんでした。")
|
29 |
+
if __name__ == "__main__":
|
30 |
+
asyncio.run(main())
|