Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -283,35 +283,6 @@ def llm_to_process_image_simple(risk_level, image_path, point1, point2, threshol
|
|
283 |
return save_dir + debug_image_path
|
284 |
|
285 |
|
286 |
-
# ObjectDetector と WebScraper は非同期対応が必要です。
|
287 |
-
# 仮のクラス定義(実際のあなたのクラスに置き換えてください)
|
288 |
-
class ObjectDetector:
|
289 |
-
def __init__(self, API_KEY):
|
290 |
-
self.API_KEY = API_KEY
|
291 |
-
self.prompt_objects = []
|
292 |
-
self.text = ""
|
293 |
-
|
294 |
-
async def detect_auto(self, image_path):
|
295 |
-
print(f"Detecting objects automatically for {image_path}")
|
296 |
-
await asyncio.sleep(0.1) # 非同期処理のシミュレーション
|
297 |
-
return {"objects_to_remove": ["人", "車"]} # 例の戻り値
|
298 |
-
|
299 |
-
async def detect_objects(self, image_path):
|
300 |
-
print(f"Detecting specific objects for {image_path}")
|
301 |
-
await asyncio.sleep(0.1) # 非同期処理のシミュレーション
|
302 |
-
return [
|
303 |
-
{'box_2d': [0.1, 0.1, 0.3, 0.3]}, # 例のバウンディングボックス (y1, x1, y2, x2)
|
304 |
-
{'box_2d': [0.5, 0.5, 0.7, 0.7]}
|
305 |
-
]
|
306 |
-
|
307 |
-
class WebScraper:
|
308 |
-
def __init__(self, headless):
|
309 |
-
self.headless = headless
|
310 |
-
|
311 |
-
async def get_processed_documents(self, search_query, num_search_results):
|
312 |
-
print(f"Scraping for: {search_query}")
|
313 |
-
await asyncio.sleep(0.1) # 非同期処理のシミュレーション
|
314 |
-
return {"cleaned_html_content": "個人情報漏洩に関するクリーンなコンテンツの例。"}
|
315 |
|
316 |
async def llm_to_process_image_simple_auto(risk_level, image_path, point1, point2, thresholds=None):
|
317 |
print(f"リスクレベル: {risk_level}, 画像パス: {image_path}, point1: {point1}, point2: {point2}, しきい値: {thresholds}")
|
@@ -1065,7 +1036,7 @@ async def create_mask_sum_auto(image: UploadFile = File(...), risk_level: int =
|
|
1065 |
# 一意な識別子を生成
|
1066 |
unique_id = uuid.uuid4().hex
|
1067 |
input_path = save_image(image.file, f"./input_{timestamp}_{unique_id}.jpg")
|
1068 |
-
mask_path,response = llm_to_process_image_simple_auto(risk_level, input_path, point1, point2,thresholds=thresholds)
|
1069 |
output_path = f"./output_simple_lama_{timestamp}_{unique_id}.jpg"
|
1070 |
print('point1,point2',point1,point2)#消去したくない範囲のこと
|
1071 |
# OpenCVでインペイント
|
|
|
283 |
return save_dir + debug_image_path
|
284 |
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
async def llm_to_process_image_simple_auto(risk_level, image_path, point1, point2, thresholds=None):
|
288 |
print(f"リスクレベル: {risk_level}, 画像パス: {image_path}, point1: {point1}, point2: {point2}, しきい値: {thresholds}")
|
|
|
1036 |
# 一意な識別子を生成
|
1037 |
unique_id = uuid.uuid4().hex
|
1038 |
input_path = save_image(image.file, f"./input_{timestamp}_{unique_id}.jpg")
|
1039 |
+
mask_path,response =await llm_to_process_image_simple_auto(risk_level, input_path, point1, point2,thresholds=thresholds)
|
1040 |
output_path = f"./output_simple_lama_{timestamp}_{unique_id}.jpg"
|
1041 |
print('point1,point2',point1,point2)#消去したくない範囲のこと
|
1042 |
# OpenCVでインペイント
|