File size: 3,881 Bytes
a20719a 006270c 21a2ce4 6123f94 07a6275 92ed922 96c8c19 07a6275 27f73fa 07a6275 1b3ea2c 07a6275 1b3ea2c 07a6275 6a2fa62 07a6275 6a2fa62 642303e 07a6275 642303e 07a6275 642303e 07a6275 642303e 07a6275 642303e 07a6275 642303e 07a6275 642303e 07a6275 812e077 07a6275 642303e 07a6275 642303e c3cd455 642303e 96c8c19 18e65bf 1306203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import streamlit as st
import base64
import os.path
import cv2
import random
os.system("mkdir _input")
os.system("mkdir _output")
os.system("mkdir _outputf")
os.system("ls")
title = "Melhoria de imagens"
st.title(title)
os.system("ls")
description = "Sistema para automação。"
st.header(description)
article = "<p style='text-align: center'><a href='https://huggingface.co/spaces/akhaliq/GFPGAN/' target='_blank'>clone from akhaliq@huggingface with little change</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>GFPGAN Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
#-s 720x1280
load = st.checkbox("load")
if load:
percent_complete=0
my_bar = st.progress(0)
percent_complete= percent_complete+ 10
my_bar.progress(percent_complete )
#exec=True
st.write("ffmpeg separando imagens")
#if not os.path.isfile("./_input/imagem-0001.png"):
os.system("ffmpeg -i vivi.mp4 -compression_level 10 -pred mixed -pix_fmt rgb24 -sws_flags +accurate_rnd+full_chroma_int -s 1480x2560 -r 30 ./_input/imagem-%4d.png")
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
st.write("testando imagem")
input_img = cv2.imread("./_input/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
st.image(input_img)
os.system("ls ./_input")
if 'myVar' not in globals():
myVar=""
st.write("melhorando faces")
with st.spinner('Wait for it...'):
# os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
os.system("python3 inference_gfpgan.py -i _input -o _output -v 1.3 -s 2")
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
os.system("ls ./_output")
os.system("echo ----")
os.system("ls ./_output/cmp")
os.system("echo ----")
os.system("ls ./_output/restored_imgs")
os.system("echo ----")
# s 1480x2560
st.write("recompilando video")
#ffmpeg -r 60 -f image2 -s 1920x1080 -i _output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p ./videoSaida/output.mp4
os.system("ffmpeg -y -r 30 -f image2 -i _output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p ./videoSaida/output.mp4")
os.system("ls ./videoSaida")
#st.video("./videoSaida/output.mp4" )
st.write("preparando para download do video")
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
with open("./videoSaida/output.mp4", "rb") as file:
st.video(file)
btn = st.download_button(
label="Download video",
data=file,
file_name="output.png",
mime="video/mp4"
)
#st.download_button("download video", data, file_name='output.mp4', mime='video/mp4',)
#stremio
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
st.write("demonstrando imagem restaurada")
input_img = cv2.imread("./_output/restored_imgs/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
st.image(input_img)
exec=False
#return Image.fromarray(restored_faces[0][:,:,::-1])
#st.button('Imagem',on_click=inference)
exec=True
|