File size: 4,127 Bytes
a20719a
006270c
21a2ce4
6123f94
 
 
07a6275
92ed922
 
 
 
7b94e89
96c8c19
07a6275
 
 
 
 
 
27f73fa
7b94e89
b6c06f2
1b3ea2c
 
07a6275
7b94e89
 
6a2fa62
7b94e89
6a2fa62
642303e
07a6275
7b94e89
 
 
642303e
 
7b94e89
 
07a6275
642303e
 
 
07a6275
7b94e89
 
642303e
07a6275
7b94e89
 
 
07a6275
642303e
 
 
 
 
 
 
7b94e89
 
642303e
 
 
 
7b94e89
 
 
 
 
812e077
 
07a6275
642303e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b94e89
 
 
 
642303e
7b94e89
642303e
 
b6c06f2
 
 
 
642303e
96c8c19
18e65bf
1306203
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
import base64
import os.path
import cv2
import random
       

os.system("mkdir _input")
os.system("mkdir _output")
os.system("mkdir _outputf")
os.system("ls")
col1, col2 = st.columns(2)

title = "Melhoria de imagens"
st.title(title)
os.system("ls")
description = "Sistema para automação。"
st.header(description)
article = "<p style='text-align: center'><a href='https://huggingface.co/spaces/akhaliq/GFPGAN/' target='_blank'>clone from akhaliq@huggingface with little change</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>GFPGAN Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
#-s 720x1280 
@st.experimental_memo
def chamada():
          percent_complete=0
          my_bar = st.progress(0)   
          percent_complete= percent_complete+ 10
          with col1:
           my_bar.progress(percent_complete )    
       #exec=True 
           st.write("ffmpeg separando imagens")
       #if not os.path.isfile("./_input/imagem-0001.png"):
          os.system("ffmpeg -i vivi.mp4   -compression_level 10 -pred mixed -pix_fmt rgb24 -sws_flags +accurate_rnd+full_chroma_int -s 1480x2560  -r 30 ./_input/imagem-%4d.png")
          percent_complete= percent_complete+ 30
          with col1:
           my_bar.progress(percent_complete )   
           st.write("testando imagem")
          input_img = cv2.imread("./_input/imagem-0002.png" , cv2.IMREAD_COLOR)
          input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB) 
          with col1:
           st.image(input_img)
          
          os.system("ls ./_input") 
          if 'myVar' not in globals():
              myVar=""
          st.write("melhorando faces")
          with col2:
           with st.spinner('Wait for it...'):
             # os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
                    os.system("python3 inference_gfpgan.py -i _input -o _output -v 1.3 -s 2")
          with col1:
           percent_complete= percent_complete+ 30
           my_bar.progress(percent_complete )   
         
          os.system("ls ./_output")
          os.system("echo ----")
          os.system("ls ./_output/cmp")
          os.system("echo ----")
          os.system("ls ./_output/restored_imgs")
          os.system("echo ----")
#          s 1480x2560
          with col1:
           st.write("recompilando video")
          #ffmpeg -r 60 -f image2 -s 1920x1080 -i _output/restored_imgs/imagem-%4d.png   -pix_fmt yuv420p ./videoSaida/output.mp4
          os.system("ffmpeg -y -r 30 -f image2  -i _output/restored_imgs/imagem-%4d.png   -pix_fmt yuv420p ./videoSaida/output.mp4")
          os.system("ls ./videoSaida")
          #st.video("./videoSaida/output.mp4" )
          with col1:
           st.write("preparando para download do video")
           percent_complete= percent_complete+ 30
           my_bar.progress(percent_complete ) 
          with col2:
          with open("./videoSaida/output.mp4", "rb") as file:
              st.video(file)

              btn = st.download_button(
          
                      label="Download video",
          
                      data=file,
          
                      file_name="output.png",
          
                      mime="video/mp4"
          
                    )
          #st.download_button("download video", data, file_name='output.mp4', mime='video/mp4',)
          #stremio
          #input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
          #input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
          with col2
           st.write("demonstrando imagem restaurada")
           input_img = cv2.imread("./_output/restored_imgs/imagem-0002.png" , cv2.IMREAD_COLOR)
           input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB) 
          
           st.image(input_img)
          exec=False
       #return Image.fromarray(restored_faces[0][:,:,::-1])
load = st.checkbox("load")

if load:
       chamada()
   
#st.button('Imagem',on_click=inference)
exec=True