Leonard Bruns
Add Vista example
d323598
from __future__ import annotations
import numpy as np
import torch
class AbstractDistribution:
def sample(self):
raise NotImplementedError
def mode(self):
raise NotImplementedError
class DiracDistribution(AbstractDistribution):
def __init__(self, value):
self.value = value
def sample(self):
return self.value
def mode(self):
return self.value
class DiagonalGaussianDistribution:
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self):
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=[1, 2, 3]
)
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,
2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=[1, 2, 3]
)
def nll(self, sample, dims=[1, 2, 3]):
if self.deterministic:
return torch.Tensor([0.0])
else:
return 0.5 * torch.sum(
np.log(2.0 * np.pi) + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims
)
def mode(self):
return self.mean