Spaces:
Running
Running
Update to 0.23.0
Browse files- README.md +174 -52
- app.py +148 -22
- color_grid.py +6 -4
- css.css +4 -3
- examples/rgbd.rrd +2 -2
- examples/rrt-star.rrd +2 -2
- examples/structure_from_motion.rrd +2 -2
- requirements.txt +1 -1
- space.py +313 -59
README.md
CHANGED
|
@@ -10,7 +10,7 @@ app_file: space.py
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# `gradio_rerun`
|
| 13 |
-
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/
|
| 14 |
|
| 15 |
Rerun viewer with Gradio
|
| 16 |
|
|
@@ -23,22 +23,37 @@ pip install gradio_rerun
|
|
| 23 |
## Usage
|
| 24 |
|
| 25 |
```python
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
import os
|
| 28 |
import tempfile
|
| 29 |
import time
|
|
|
|
| 30 |
|
|
|
|
| 31 |
import gradio as gr
|
| 32 |
-
from gradio_rerun import Rerun
|
| 33 |
-
|
| 34 |
import rerun as rr
|
| 35 |
import rerun.blueprint as rrb
|
| 36 |
-
|
| 37 |
from color_grid import build_color_grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
#
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
@@ -46,9 +61,10 @@ from color_grid import build_color_grid
|
|
| 46 |
#
|
| 47 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 48 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
if img is None:
|
| 54 |
raise gr.Error("Must provide an image to blur.")
|
|
@@ -61,23 +77,19 @@ def streaming_repeated_blur(img):
|
|
| 61 |
collapse_panels=True,
|
| 62 |
)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
rr.log("image/original", rr.Image(img))
|
| 69 |
yield stream.read()
|
| 70 |
|
| 71 |
blur = img
|
| 72 |
-
|
| 73 |
for i in range(100):
|
| 74 |
-
|
| 75 |
|
| 76 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 77 |
time.sleep(0.1)
|
| 78 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 79 |
-
|
| 80 |
-
rr.log("image/blurred", rr.Image(blur))
|
| 81 |
|
| 82 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 83 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
@@ -85,6 +97,87 @@ def streaming_repeated_blur(img):
|
|
| 85 |
yield stream.read()
|
| 86 |
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 89 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 90 |
#
|
|
@@ -92,12 +185,15 @@ def streaming_repeated_blur(img):
|
|
| 92 |
# be easily modified to stream data directly via Gradio.
|
| 93 |
#
|
| 94 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 95 |
-
# don't accumulate too many
|
| 96 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 97 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 98 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 99 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 102 |
# any pending files to be cleaned up when the state is deleted.
|
| 103 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
@@ -111,7 +207,7 @@ def create_cube_rrd(x, y, z, pending_cleanup):
|
|
| 111 |
return temp.name
|
| 112 |
|
| 113 |
|
| 114 |
-
def cleanup_cube_rrds(pending_cleanup):
|
| 115 |
for f in pending_cleanup:
|
| 116 |
os.unlink(f)
|
| 117 |
|
|
@@ -122,6 +218,7 @@ with gr.Blocks() as demo:
|
|
| 122 |
img = gr.Image(interactive=True, label="Image")
|
| 123 |
with gr.Column():
|
| 124 |
stream_blur = gr.Button("Stream Repeated Blur")
|
|
|
|
| 125 |
with gr.Row():
|
| 126 |
viewer = Rerun(
|
| 127 |
streaming=True,
|
|
@@ -131,22 +228,35 @@ with gr.Blocks() as demo:
|
|
| 131 |
"selection": "hidden",
|
| 132 |
},
|
| 133 |
)
|
| 134 |
-
stream_blur.click(streaming_repeated_blur, inputs=[img], outputs=[viewer])
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
with gr.Row():
|
| 141 |
-
x_count = gr.Number(
|
| 142 |
-
|
| 143 |
-
)
|
| 144 |
-
y_count = gr.Number(
|
| 145 |
-
minimum=1, maximum=10, value=5, precision=0, label="Y Count"
|
| 146 |
-
)
|
| 147 |
-
z_count = gr.Number(
|
| 148 |
-
minimum=1, maximum=10, value=5, precision=0, label="Z Count"
|
| 149 |
-
)
|
| 150 |
with gr.Row():
|
| 151 |
create_rrd = gr.Button("Create RRD")
|
| 152 |
with gr.Row():
|
|
@@ -186,6 +296,8 @@ with gr.Blocks() as demo:
|
|
| 186 |
},
|
| 187 |
)
|
| 188 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
|
|
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
|
@@ -216,13 +328,13 @@ list[pathlib.Path | str]
|
|
| 216 |
| pathlib.Path
|
| 217 |
| str
|
| 218 |
| bytes
|
| 219 |
-
| Callable
|
| 220 |
| None
|
| 221 |
```
|
| 222 |
|
| 223 |
</td>
|
| 224 |
<td align="left"><code>None</code></td>
|
| 225 |
-
<td align="left">Takes a singular or list of RRD resources. Each RRD can be a Path, a string containing a url
|
| 226 |
</tr>
|
| 227 |
|
| 228 |
<tr>
|
|
@@ -235,7 +347,7 @@ str | None
|
|
| 235 |
|
| 236 |
</td>
|
| 237 |
<td align="left"><code>None</code></td>
|
| 238 |
-
<td align="left">The label for this component. Appears above the component and is also used as the header if there
|
| 239 |
</tr>
|
| 240 |
|
| 241 |
<tr>
|
|
@@ -248,7 +360,7 @@ float | None
|
|
| 248 |
|
| 249 |
</td>
|
| 250 |
<td align="left"><code>None</code></td>
|
| 251 |
-
<td align="left">If `value` is a callable, run the function 'every' number of seconds while the client connection is
|
| 252 |
</tr>
|
| 253 |
|
| 254 |
<tr>
|
|
@@ -274,7 +386,7 @@ bool
|
|
| 274 |
|
| 275 |
</td>
|
| 276 |
<td align="left"><code>True</code></td>
|
| 277 |
-
<td align="left">If True, will place the component in a container
|
| 278 |
</tr>
|
| 279 |
|
| 280 |
<tr>
|
|
@@ -287,7 +399,7 @@ int | None
|
|
| 287 |
|
| 288 |
</td>
|
| 289 |
<td align="left"><code>None</code></td>
|
| 290 |
-
<td align="left">relative size compared to adjacent Components
|
| 291 |
</tr>
|
| 292 |
|
| 293 |
<tr>
|
|
@@ -300,7 +412,7 @@ int
|
|
| 300 |
|
| 301 |
</td>
|
| 302 |
<td align="left"><code>160</code></td>
|
| 303 |
-
<td align="left">minimum pixel width, will wrap if not sufficient screen space to satisfy this value
|
| 304 |
</tr>
|
| 305 |
|
| 306 |
<tr>
|
|
@@ -313,7 +425,7 @@ int | str
|
|
| 313 |
|
| 314 |
</td>
|
| 315 |
<td align="left"><code>640</code></td>
|
| 316 |
-
<td align="left">height of component in pixels. If a string is provided, will be interpreted as a CSS value
|
| 317 |
</tr>
|
| 318 |
|
| 319 |
<tr>
|
|
@@ -339,7 +451,7 @@ bool
|
|
| 339 |
|
| 340 |
</td>
|
| 341 |
<td align="left"><code>False</code></td>
|
| 342 |
-
<td align="left">If True, the data should be incrementally yielded from the source as `bytes` returned by
|
| 343 |
</tr>
|
| 344 |
|
| 345 |
<tr>
|
|
@@ -352,7 +464,7 @@ str | None
|
|
| 352 |
|
| 353 |
</td>
|
| 354 |
<td align="left"><code>None</code></td>
|
| 355 |
-
<td align="left">An optional string that is assigned as the id of this component in the HTML DOM
|
| 356 |
</tr>
|
| 357 |
|
| 358 |
<tr>
|
|
@@ -365,7 +477,7 @@ list[str] | str | None
|
|
| 365 |
|
| 366 |
</td>
|
| 367 |
<td align="left"><code>None</code></td>
|
| 368 |
-
<td align="left">An optional list of strings that are assigned as the classes of this component in
|
| 369 |
</tr>
|
| 370 |
|
| 371 |
<tr>
|
|
@@ -378,7 +490,7 @@ bool
|
|
| 378 |
|
| 379 |
</td>
|
| 380 |
<td align="left"><code>True</code></td>
|
| 381 |
-
<td align="left">If False, component will not render be rendered in the Blocks context
|
| 382 |
</tr>
|
| 383 |
|
| 384 |
<tr>
|
|
@@ -386,16 +498,26 @@ bool
|
|
| 386 |
<td align="left" style="width: 25%;">
|
| 387 |
|
| 388 |
```python
|
| 389 |
-
dict[str, Any] | None
|
| 390 |
```
|
| 391 |
|
| 392 |
</td>
|
| 393 |
<td align="left"><code>None</code></td>
|
| 394 |
-
<td align="left">Force viewer panels to a specific state
|
| 395 |
</tr>
|
| 396 |
</tbody></table>
|
| 397 |
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
|
| 401 |
### User function
|
|
@@ -407,8 +529,8 @@ The impact on the users predict function varies depending on whether the compone
|
|
| 407 |
|
| 408 |
The code snippet below is accurate in cases where the component is used as both an input and an output.
|
| 409 |
|
| 410 |
-
- **As output:** Is passed, a RerunData object.
|
| 411 |
-
- **As input:** Should return,
|
| 412 |
|
| 413 |
```python
|
| 414 |
def predict(
|
|
@@ -421,5 +543,5 @@ The code snippet below is accurate in cases where the component is used as both
|
|
| 421 |
## `RerunData`
|
| 422 |
```python
|
| 423 |
class RerunData(GradioRootModel):
|
| 424 |
-
root:
|
| 425 |
```
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# `gradio_rerun`
|
| 13 |
+
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/rerun-io/gradio-rerun-viewer/issues" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/Issues-white?logo=github&logoColor=black"></a> <a href="https://huggingface.co/spaces/rerun/gradio-rerun-viewer/discussions" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Discuss-%23097EFF?style=flat&logoColor=black"></a>
|
| 14 |
|
| 15 |
Rerun viewer with Gradio
|
| 16 |
|
|
|
|
| 23 |
## Usage
|
| 24 |
|
| 25 |
```python
|
| 26 |
+
"""
|
| 27 |
+
Demonstrates integrating Rerun visualization with Gradio.
|
| 28 |
+
|
| 29 |
+
Provides example implementations of data streaming, keypoint annotation, and dynamic
|
| 30 |
+
visualization across multiple Gradio tabs using Rerun's recording and visualization capabilities.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
import math
|
| 34 |
import os
|
| 35 |
import tempfile
|
| 36 |
import time
|
| 37 |
+
import uuid
|
| 38 |
|
| 39 |
+
import cv2
|
| 40 |
import gradio as gr
|
|
|
|
|
|
|
| 41 |
import rerun as rr
|
| 42 |
import rerun.blueprint as rrb
|
|
|
|
| 43 |
from color_grid import build_color_grid
|
| 44 |
+
from gradio_rerun import Rerun
|
| 45 |
+
from gradio_rerun.events import (
|
| 46 |
+
SelectionChange,
|
| 47 |
+
TimelineChange,
|
| 48 |
+
TimeUpdate,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
|
| 52 |
+
# Whenever we need a recording, we construct a new recording stream.
|
| 53 |
+
# As long as the app and recording IDs remain the same, the data
|
| 54 |
+
# will be merged by the Viewer.
|
| 55 |
+
def get_recording(recording_id: str) -> rr.RecordingStream:
|
| 56 |
+
return rr.RecordingStream(application_id="rerun_example_gradio", recording_id=recording_id)
|
| 57 |
|
| 58 |
|
| 59 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
|
|
| 61 |
#
|
| 62 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 63 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 64 |
+
def streaming_repeated_blur(recording_id: str, img):
|
| 65 |
+
# Here we get a recording using the provided recording id.
|
| 66 |
+
rec = get_recording(recording_id)
|
| 67 |
+
stream = rec.binary_stream()
|
| 68 |
|
| 69 |
if img is None:
|
| 70 |
raise gr.Error("Must provide an image to blur.")
|
|
|
|
| 77 |
collapse_panels=True,
|
| 78 |
)
|
| 79 |
|
| 80 |
+
rec.send_blueprint(blueprint)
|
| 81 |
+
rec.set_time("iteration", sequence=0)
|
| 82 |
+
rec.log("image/original", rr.Image(img))
|
|
|
|
|
|
|
| 83 |
yield stream.read()
|
| 84 |
|
| 85 |
blur = img
|
|
|
|
| 86 |
for i in range(100):
|
| 87 |
+
rec.set_time("iteration", sequence=i)
|
| 88 |
|
| 89 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 90 |
time.sleep(0.1)
|
| 91 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 92 |
+
rec.log("image/blurred", rr.Image(blur))
|
|
|
|
| 93 |
|
| 94 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 95 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
|
|
| 97 |
yield stream.read()
|
| 98 |
|
| 99 |
|
| 100 |
+
# In this example the user is able to add keypoints to an image visualized in Rerun.
|
| 101 |
+
# These keypoints are stored in the global state, we use the session id to keep track of which keypoints belong
|
| 102 |
+
# to a specific session (https://www.gradio.app/guides/state-in-blocks).
|
| 103 |
+
#
|
| 104 |
+
# The current session can be obtained by adding a parameter of type `gradio.Request` to your event listener functions.
|
| 105 |
+
Keypoint = tuple[float, float]
|
| 106 |
+
keypoints_per_session_per_sequence_index: dict[str, dict[int, list[Keypoint]]] = {}
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def get_keypoints_for_user_at_sequence_index(request: gr.Request, sequence: int) -> list[Keypoint]:
|
| 110 |
+
per_sequence = keypoints_per_session_per_sequence_index[request.session_hash]
|
| 111 |
+
if sequence not in per_sequence:
|
| 112 |
+
per_sequence[sequence] = []
|
| 113 |
+
|
| 114 |
+
return per_sequence[sequence]
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def initialize_instance(request: gr.Request) -> None:
|
| 118 |
+
keypoints_per_session_per_sequence_index[request.session_hash] = {}
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def cleanup_instance(request: gr.Request) -> None:
|
| 122 |
+
if request.session_hash in keypoints_per_session_per_sequence_index:
|
| 123 |
+
del keypoints_per_session_per_sequence_index[request.session_hash]
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this
|
| 127 |
+
# event listener is fired.
|
| 128 |
+
#
|
| 129 |
+
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
|
| 130 |
+
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
|
| 131 |
+
def register_keypoint(
|
| 132 |
+
active_recording_id: str,
|
| 133 |
+
current_timeline: str,
|
| 134 |
+
current_time: float,
|
| 135 |
+
request: gr.Request,
|
| 136 |
+
change: SelectionChange,
|
| 137 |
+
):
|
| 138 |
+
if active_recording_id == "":
|
| 139 |
+
return
|
| 140 |
+
|
| 141 |
+
if current_timeline != "iteration":
|
| 142 |
+
return
|
| 143 |
+
|
| 144 |
+
evt = change.payload
|
| 145 |
+
|
| 146 |
+
# We can only log a keypoint if the user selected only a single item.
|
| 147 |
+
if len(evt.items) != 1:
|
| 148 |
+
return
|
| 149 |
+
item = evt.items[0]
|
| 150 |
+
|
| 151 |
+
# If the selected item isn't an entity, or we don't have its position, then bail out.
|
| 152 |
+
if item.type != "entity" or item.position is None:
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
# Now we can produce a valid keypoint.
|
| 156 |
+
rec = get_recording(active_recording_id)
|
| 157 |
+
stream = rec.binary_stream()
|
| 158 |
+
|
| 159 |
+
# We round `current_time` toward 0, because that gives us the sequence index
|
| 160 |
+
# that the user is currently looking at, due to the Viewer's latest-at semantics.
|
| 161 |
+
index = math.floor(current_time)
|
| 162 |
+
|
| 163 |
+
# We keep track of the keypoints per sequence index for each user manually.
|
| 164 |
+
keypoints = get_keypoints_for_user_at_sequence_index(request, index)
|
| 165 |
+
keypoints.append(item.position[0:2])
|
| 166 |
+
|
| 167 |
+
rec.set_time("iteration", sequence=index)
|
| 168 |
+
rec.log(f"{item.entity_path}/keypoint", rr.Points2D(keypoints, radii=2))
|
| 169 |
+
|
| 170 |
+
yield stream.read()
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def track_current_time(evt: TimeUpdate):
|
| 174 |
+
return evt.payload.time
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def track_current_timeline_and_time(evt: TimelineChange):
|
| 178 |
+
return evt.payload.timeline, evt.payload.time
|
| 179 |
+
|
| 180 |
+
|
| 181 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 182 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 183 |
#
|
|
|
|
| 185 |
# be easily modified to stream data directly via Gradio.
|
| 186 |
#
|
| 187 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 188 |
+
# don't accumulate too many temporary files.
|
| 189 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 190 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 191 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 192 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 193 |
|
| 194 |
+
# Simulate delay
|
| 195 |
+
time.sleep(x / 10)
|
| 196 |
+
|
| 197 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 198 |
# any pending files to be cleaned up when the state is deleted.
|
| 199 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
|
|
| 207 |
return temp.name
|
| 208 |
|
| 209 |
|
| 210 |
+
def cleanup_cube_rrds(pending_cleanup: list[str]) -> None:
|
| 211 |
for f in pending_cleanup:
|
| 212 |
os.unlink(f)
|
| 213 |
|
|
|
|
| 218 |
img = gr.Image(interactive=True, label="Image")
|
| 219 |
with gr.Column():
|
| 220 |
stream_blur = gr.Button("Stream Repeated Blur")
|
| 221 |
+
|
| 222 |
with gr.Row():
|
| 223 |
viewer = Rerun(
|
| 224 |
streaming=True,
|
|
|
|
| 228 |
"selection": "hidden",
|
| 229 |
},
|
| 230 |
)
|
|
|
|
| 231 |
|
| 232 |
+
# We make a new recording id, and store it in a Gradio's session state.
|
| 233 |
+
recording_id = gr.State(uuid.uuid4())
|
| 234 |
+
|
| 235 |
+
# Also store the current timeline and time of the viewer in the session state.
|
| 236 |
+
current_timeline = gr.State("")
|
| 237 |
+
current_time = gr.State(0.0)
|
| 238 |
+
|
| 239 |
+
# When registering the event listeners, we pass the `recording_id` in as input in order to create
|
| 240 |
+
# a recording stream using that id.
|
| 241 |
+
stream_blur.click(
|
| 242 |
+
# Using the `viewer` as an output allows us to stream data to it by yielding bytes from the callback.
|
| 243 |
+
streaming_repeated_blur,
|
| 244 |
+
inputs=[recording_id, img],
|
| 245 |
+
outputs=[viewer],
|
| 246 |
)
|
| 247 |
+
viewer.selection_change(
|
| 248 |
+
register_keypoint,
|
| 249 |
+
inputs=[recording_id, current_timeline, current_time],
|
| 250 |
+
outputs=[viewer],
|
| 251 |
+
)
|
| 252 |
+
viewer.time_update(track_current_time, outputs=[current_time])
|
| 253 |
+
viewer.timeline_change(track_current_timeline_and_time, outputs=[current_timeline, current_time])
|
| 254 |
+
with gr.Tab("Dynamic RRD"):
|
| 255 |
+
pending_cleanup = gr.State([], time_to_live=10, delete_callback=cleanup_cube_rrds)
|
| 256 |
with gr.Row():
|
| 257 |
+
x_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="X Count")
|
| 258 |
+
y_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Y Count")
|
| 259 |
+
z_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Z Count")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
with gr.Row():
|
| 261 |
create_rrd = gr.Button("Create RRD")
|
| 262 |
with gr.Row():
|
|
|
|
| 296 |
},
|
| 297 |
)
|
| 298 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
| 299 |
+
demo.load(initialize_instance)
|
| 300 |
+
demo.close(cleanup_instance)
|
| 301 |
|
| 302 |
|
| 303 |
if __name__ == "__main__":
|
|
|
|
| 328 |
| pathlib.Path
|
| 329 |
| str
|
| 330 |
| bytes
|
| 331 |
+
| collections.abc.Callable
|
| 332 |
| None
|
| 333 |
```
|
| 334 |
|
| 335 |
</td>
|
| 336 |
<td align="left"><code>None</code></td>
|
| 337 |
+
<td align="left">Takes a singular or list of RRD resources. Each RRD can be a Path, a string containing a url,</td>
|
| 338 |
</tr>
|
| 339 |
|
| 340 |
<tr>
|
|
|
|
| 347 |
|
| 348 |
</td>
|
| 349 |
<td align="left"><code>None</code></td>
|
| 350 |
+
<td align="left">The label for this component. Appears above the component and is also used as the header if there</td>
|
| 351 |
</tr>
|
| 352 |
|
| 353 |
<tr>
|
|
|
|
| 360 |
|
| 361 |
</td>
|
| 362 |
<td align="left"><code>None</code></td>
|
| 363 |
+
<td align="left">If `value` is a callable, run the function 'every' number of seconds while the client connection is</td>
|
| 364 |
</tr>
|
| 365 |
|
| 366 |
<tr>
|
|
|
|
| 386 |
|
| 387 |
</td>
|
| 388 |
<td align="left"><code>True</code></td>
|
| 389 |
+
<td align="left">If True, will place the component in a container providing some extra padding around the border.</td>
|
| 390 |
</tr>
|
| 391 |
|
| 392 |
<tr>
|
|
|
|
| 399 |
|
| 400 |
</td>
|
| 401 |
<td align="left"><code>None</code></td>
|
| 402 |
+
<td align="left">relative size compared to adjacent Components.</td>
|
| 403 |
</tr>
|
| 404 |
|
| 405 |
<tr>
|
|
|
|
| 412 |
|
| 413 |
</td>
|
| 414 |
<td align="left"><code>160</code></td>
|
| 415 |
+
<td align="left">minimum pixel width, will wrap if not sufficient screen space to satisfy this value.</td>
|
| 416 |
</tr>
|
| 417 |
|
| 418 |
<tr>
|
|
|
|
| 425 |
|
| 426 |
</td>
|
| 427 |
<td align="left"><code>640</code></td>
|
| 428 |
+
<td align="left">height of component in pixels. If a string is provided, will be interpreted as a CSS value.</td>
|
| 429 |
</tr>
|
| 430 |
|
| 431 |
<tr>
|
|
|
|
| 451 |
|
| 452 |
</td>
|
| 453 |
<td align="left"><code>False</code></td>
|
| 454 |
+
<td align="left">If True, the data should be incrementally yielded from the source as `bytes` returned by</td>
|
| 455 |
</tr>
|
| 456 |
|
| 457 |
<tr>
|
|
|
|
| 464 |
|
| 465 |
</td>
|
| 466 |
<td align="left"><code>None</code></td>
|
| 467 |
+
<td align="left">An optional string that is assigned as the id of this component in the HTML DOM.</td>
|
| 468 |
</tr>
|
| 469 |
|
| 470 |
<tr>
|
|
|
|
| 477 |
|
| 478 |
</td>
|
| 479 |
<td align="left"><code>None</code></td>
|
| 480 |
+
<td align="left">An optional list of strings that are assigned as the classes of this component in</td>
|
| 481 |
</tr>
|
| 482 |
|
| 483 |
<tr>
|
|
|
|
| 490 |
|
| 491 |
</td>
|
| 492 |
<td align="left"><code>True</code></td>
|
| 493 |
+
<td align="left">If False, component will not render be rendered in the Blocks context.</td>
|
| 494 |
</tr>
|
| 495 |
|
| 496 |
<tr>
|
|
|
|
| 498 |
<td align="left" style="width: 25%;">
|
| 499 |
|
| 500 |
```python
|
| 501 |
+
dict[str, typing.Any] | None
|
| 502 |
```
|
| 503 |
|
| 504 |
</td>
|
| 505 |
<td align="left"><code>None</code></td>
|
| 506 |
+
<td align="left">Force viewer panels to a specific state.</td>
|
| 507 |
</tr>
|
| 508 |
</tbody></table>
|
| 509 |
|
| 510 |
|
| 511 |
+
### Events
|
| 512 |
+
|
| 513 |
+
| name | description |
|
| 514 |
+
| :----------------- | :------------------------------------------------------------------------------------------------------------------ |
|
| 515 |
+
| `play` | Fired when timeline playback starts. Callback should accept a parameter of type `gradio_rerun.events.Play` |
|
| 516 |
+
| `pause` | Fired when timeline pauseback starts. Callback should accept a parameter of type `gradio_rerun.events.Pause` |
|
| 517 |
+
| `time_update` | Fired when time updates. Callback should accept a parameter of type `gradio_rerun.events.TimeUpdate`. |
|
| 518 |
+
| `timeline_change` | Fired when a timeline is selected. Callback should accept a parameter of type `gradio_rerun.events.TimelineChange`. |
|
| 519 |
+
| `selection_change` | Fired when the selection changes. Callback should accept a parameter of type `gradio_rerun.events.SelectionChange`. |
|
| 520 |
+
|
| 521 |
|
| 522 |
|
| 523 |
### User function
|
|
|
|
| 529 |
|
| 530 |
The code snippet below is accurate in cases where the component is used as both an input and an output.
|
| 531 |
|
| 532 |
+
- **As output:** Is passed, a `RerunData` object.
|
| 533 |
+
- **As input:** Should return, the value to send over to the Rerun viewer on the front-end.
|
| 534 |
|
| 535 |
```python
|
| 536 |
def predict(
|
|
|
|
| 543 |
## `RerunData`
|
| 544 |
```python
|
| 545 |
class RerunData(GradioRootModel):
|
| 546 |
+
root: Sequence[FileData | Path | str] | None
|
| 547 |
```
|
app.py
CHANGED
|
@@ -1,19 +1,36 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
import time
|
|
|
|
| 5 |
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
-
from gradio_rerun import Rerun
|
| 8 |
-
|
| 9 |
import rerun as rr
|
| 10 |
import rerun.blueprint as rrb
|
| 11 |
-
|
| 12 |
from color_grid import build_color_grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
@@ -21,9 +38,10 @@ from color_grid import build_color_grid
|
|
| 21 |
#
|
| 22 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 23 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
if img is None:
|
| 29 |
raise gr.Error("Must provide an image to blur.")
|
|
@@ -36,23 +54,19 @@ def streaming_repeated_blur(img):
|
|
| 36 |
collapse_panels=True,
|
| 37 |
)
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
rr.log("image/original", rr.Image(img))
|
| 44 |
yield stream.read()
|
| 45 |
|
| 46 |
blur = img
|
| 47 |
-
|
| 48 |
for i in range(100):
|
| 49 |
-
|
| 50 |
|
| 51 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 52 |
time.sleep(0.1)
|
| 53 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 54 |
-
|
| 55 |
-
rr.log("image/blurred", rr.Image(blur))
|
| 56 |
|
| 57 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 58 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
@@ -60,6 +74,89 @@ def streaming_repeated_blur(img):
|
|
| 60 |
yield stream.read()
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 64 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 65 |
#
|
|
@@ -67,12 +164,15 @@ def streaming_repeated_blur(img):
|
|
| 67 |
# be easily modified to stream data directly via Gradio.
|
| 68 |
#
|
| 69 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 70 |
-
# don't accumulate too many
|
| 71 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 72 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 73 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 74 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 75 |
|
|
|
|
|
|
|
|
|
|
| 76 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 77 |
# any pending files to be cleaned up when the state is deleted.
|
| 78 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
@@ -86,7 +186,7 @@ def create_cube_rrd(x, y, z, pending_cleanup):
|
|
| 86 |
return temp.name
|
| 87 |
|
| 88 |
|
| 89 |
-
def cleanup_cube_rrds(pending_cleanup):
|
| 90 |
for f in pending_cleanup:
|
| 91 |
os.unlink(f)
|
| 92 |
|
|
@@ -97,6 +197,7 @@ with gr.Blocks() as demo:
|
|
| 97 |
img = gr.Image(interactive=True, label="Image")
|
| 98 |
with gr.Column():
|
| 99 |
stream_blur = gr.Button("Stream Repeated Blur")
|
|
|
|
| 100 |
with gr.Row():
|
| 101 |
viewer = Rerun(
|
| 102 |
streaming=True,
|
|
@@ -106,8 +207,31 @@ with gr.Blocks() as demo:
|
|
| 106 |
"selection": "hidden",
|
| 107 |
},
|
| 108 |
)
|
| 109 |
-
stream_blur.click(streaming_repeated_blur, inputs=[img], outputs=[viewer])
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with gr.Tab("Dynamic RRD"):
|
| 112 |
pending_cleanup = gr.State(
|
| 113 |
[], time_to_live=10, delete_callback=cleanup_cube_rrds
|
|
@@ -161,6 +285,8 @@ with gr.Blocks() as demo:
|
|
| 161 |
},
|
| 162 |
)
|
| 163 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
|
|
|
|
|
|
| 164 |
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Demonstrates integrating Rerun visualization with Gradio.
|
| 3 |
+
|
| 4 |
+
Provides example implementations of data streaming, keypoint annotation, and dynamic
|
| 5 |
+
visualization across multiple Gradio tabs using Rerun's recording and visualization capabilities.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
import os
|
| 10 |
import tempfile
|
| 11 |
import time
|
| 12 |
+
import uuid
|
| 13 |
|
| 14 |
+
import cv2
|
| 15 |
import gradio as gr
|
|
|
|
|
|
|
| 16 |
import rerun as rr
|
| 17 |
import rerun.blueprint as rrb
|
|
|
|
| 18 |
from color_grid import build_color_grid
|
| 19 |
+
from gradio_rerun import Rerun
|
| 20 |
+
from gradio_rerun.events import (
|
| 21 |
+
SelectionChange,
|
| 22 |
+
TimelineChange,
|
| 23 |
+
TimeUpdate,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
|
| 27 |
+
# Whenever we need a recording, we construct a new recording stream.
|
| 28 |
+
# As long as the app and recording IDs remain the same, the data
|
| 29 |
+
# will be merged by the Viewer.
|
| 30 |
+
def get_recording(recording_id: str) -> rr.RecordingStream:
|
| 31 |
+
return rr.RecordingStream(
|
| 32 |
+
application_id="rerun_example_gradio", recording_id=recording_id
|
| 33 |
+
)
|
| 34 |
|
| 35 |
|
| 36 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
|
|
| 38 |
#
|
| 39 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 40 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 41 |
+
def streaming_repeated_blur(recording_id: str, img):
|
| 42 |
+
# Here we get a recording using the provided recording id.
|
| 43 |
+
rec = get_recording(recording_id)
|
| 44 |
+
stream = rec.binary_stream()
|
| 45 |
|
| 46 |
if img is None:
|
| 47 |
raise gr.Error("Must provide an image to blur.")
|
|
|
|
| 54 |
collapse_panels=True,
|
| 55 |
)
|
| 56 |
|
| 57 |
+
rec.send_blueprint(blueprint)
|
| 58 |
+
rec.set_time("iteration", sequence=0)
|
| 59 |
+
rec.log("image/original", rr.Image(img))
|
|
|
|
|
|
|
| 60 |
yield stream.read()
|
| 61 |
|
| 62 |
blur = img
|
|
|
|
| 63 |
for i in range(100):
|
| 64 |
+
rec.set_time("iteration", sequence=i)
|
| 65 |
|
| 66 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 67 |
time.sleep(0.1)
|
| 68 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 69 |
+
rec.log("image/blurred", rr.Image(blur))
|
|
|
|
| 70 |
|
| 71 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 72 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
|
|
| 74 |
yield stream.read()
|
| 75 |
|
| 76 |
|
| 77 |
+
# In this example the user is able to add keypoints to an image visualized in Rerun.
|
| 78 |
+
# These keypoints are stored in the global state, we use the session id to keep track of which keypoints belong
|
| 79 |
+
# to a specific session (https://www.gradio.app/guides/state-in-blocks).
|
| 80 |
+
#
|
| 81 |
+
# The current session can be obtained by adding a parameter of type `gradio.Request` to your event listener functions.
|
| 82 |
+
Keypoint = tuple[float, float]
|
| 83 |
+
keypoints_per_session_per_sequence_index: dict[str, dict[int, list[Keypoint]]] = {}
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_keypoints_for_user_at_sequence_index(
|
| 87 |
+
request: gr.Request, sequence: int
|
| 88 |
+
) -> list[Keypoint]:
|
| 89 |
+
per_sequence = keypoints_per_session_per_sequence_index[request.session_hash]
|
| 90 |
+
if sequence not in per_sequence:
|
| 91 |
+
per_sequence[sequence] = []
|
| 92 |
+
|
| 93 |
+
return per_sequence[sequence]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def initialize_instance(request: gr.Request) -> None:
|
| 97 |
+
keypoints_per_session_per_sequence_index[request.session_hash] = {}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def cleanup_instance(request: gr.Request) -> None:
|
| 101 |
+
if request.session_hash in keypoints_per_session_per_sequence_index:
|
| 102 |
+
del keypoints_per_session_per_sequence_index[request.session_hash]
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this
|
| 106 |
+
# event listener is fired.
|
| 107 |
+
#
|
| 108 |
+
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
|
| 109 |
+
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
|
| 110 |
+
def register_keypoint(
|
| 111 |
+
active_recording_id: str,
|
| 112 |
+
current_timeline: str,
|
| 113 |
+
current_time: float,
|
| 114 |
+
request: gr.Request,
|
| 115 |
+
change: SelectionChange,
|
| 116 |
+
):
|
| 117 |
+
if active_recording_id == "":
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
if current_timeline != "iteration":
|
| 121 |
+
return
|
| 122 |
+
|
| 123 |
+
evt = change.payload
|
| 124 |
+
|
| 125 |
+
# We can only log a keypoint if the user selected only a single item.
|
| 126 |
+
if len(evt.items) != 1:
|
| 127 |
+
return
|
| 128 |
+
item = evt.items[0]
|
| 129 |
+
|
| 130 |
+
# If the selected item isn't an entity, or we don't have its position, then bail out.
|
| 131 |
+
if item.type != "entity" or item.position is None:
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
+
# Now we can produce a valid keypoint.
|
| 135 |
+
rec = get_recording(active_recording_id)
|
| 136 |
+
stream = rec.binary_stream()
|
| 137 |
+
|
| 138 |
+
# We round `current_time` toward 0, because that gives us the sequence index
|
| 139 |
+
# that the user is currently looking at, due to the Viewer's latest-at semantics.
|
| 140 |
+
index = math.floor(current_time)
|
| 141 |
+
|
| 142 |
+
# We keep track of the keypoints per sequence index for each user manually.
|
| 143 |
+
keypoints = get_keypoints_for_user_at_sequence_index(request, index)
|
| 144 |
+
keypoints.append(item.position[0:2])
|
| 145 |
+
|
| 146 |
+
rec.set_time("iteration", sequence=index)
|
| 147 |
+
rec.log(f"{item.entity_path}/keypoint", rr.Points2D(keypoints, radii=2))
|
| 148 |
+
|
| 149 |
+
yield stream.read()
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def track_current_time(evt: TimeUpdate):
|
| 153 |
+
return evt.payload.time
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def track_current_timeline_and_time(evt: TimelineChange):
|
| 157 |
+
return evt.payload.timeline, evt.payload.time
|
| 158 |
+
|
| 159 |
+
|
| 160 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 161 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 162 |
#
|
|
|
|
| 164 |
# be easily modified to stream data directly via Gradio.
|
| 165 |
#
|
| 166 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 167 |
+
# don't accumulate too many temporary files.
|
| 168 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 169 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 170 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 171 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 172 |
|
| 173 |
+
# Simulate delay
|
| 174 |
+
time.sleep(x / 10)
|
| 175 |
+
|
| 176 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 177 |
# any pending files to be cleaned up when the state is deleted.
|
| 178 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
|
|
| 186 |
return temp.name
|
| 187 |
|
| 188 |
|
| 189 |
+
def cleanup_cube_rrds(pending_cleanup: list[str]) -> None:
|
| 190 |
for f in pending_cleanup:
|
| 191 |
os.unlink(f)
|
| 192 |
|
|
|
|
| 197 |
img = gr.Image(interactive=True, label="Image")
|
| 198 |
with gr.Column():
|
| 199 |
stream_blur = gr.Button("Stream Repeated Blur")
|
| 200 |
+
|
| 201 |
with gr.Row():
|
| 202 |
viewer = Rerun(
|
| 203 |
streaming=True,
|
|
|
|
| 207 |
"selection": "hidden",
|
| 208 |
},
|
| 209 |
)
|
|
|
|
| 210 |
|
| 211 |
+
# We make a new recording id, and store it in a Gradio's session state.
|
| 212 |
+
recording_id = gr.State(uuid.uuid4())
|
| 213 |
+
|
| 214 |
+
# Also store the current timeline and time of the viewer in the session state.
|
| 215 |
+
current_timeline = gr.State("")
|
| 216 |
+
current_time = gr.State(0.0)
|
| 217 |
+
|
| 218 |
+
# When registering the event listeners, we pass the `recording_id` in as input in order to create
|
| 219 |
+
# a recording stream using that id.
|
| 220 |
+
stream_blur.click(
|
| 221 |
+
# Using the `viewer` as an output allows us to stream data to it by yielding bytes from the callback.
|
| 222 |
+
streaming_repeated_blur,
|
| 223 |
+
inputs=[recording_id, img],
|
| 224 |
+
outputs=[viewer],
|
| 225 |
+
)
|
| 226 |
+
viewer.selection_change(
|
| 227 |
+
register_keypoint,
|
| 228 |
+
inputs=[recording_id, current_timeline, current_time],
|
| 229 |
+
outputs=[viewer],
|
| 230 |
+
)
|
| 231 |
+
viewer.time_update(track_current_time, outputs=[current_time])
|
| 232 |
+
viewer.timeline_change(
|
| 233 |
+
track_current_timeline_and_time, outputs=[current_timeline, current_time]
|
| 234 |
+
)
|
| 235 |
with gr.Tab("Dynamic RRD"):
|
| 236 |
pending_cleanup = gr.State(
|
| 237 |
[], time_to_live=10, delete_callback=cleanup_cube_rrds
|
|
|
|
| 285 |
},
|
| 286 |
)
|
| 287 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
| 288 |
+
demo.load(initialize_instance)
|
| 289 |
+
demo.close(cleanup_instance)
|
| 290 |
|
| 291 |
|
| 292 |
if __name__ == "__main__":
|
color_grid.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
-
import
|
| 2 |
from math import cos, sin
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
ColorGrid = namedtuple("ColorGrid", ["positions", "colors"])
|
| 6 |
|
| 7 |
|
| 8 |
-
def build_color_grid(
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
Create a cube of points with colors.
|
| 11 |
|
|
@@ -19,7 +22,6 @@ def build_color_grid(x_count=10, y_count=10, z_count=10, twist=0):
|
|
| 19 |
Angle to twist from bottom to top of the cube
|
| 20 |
|
| 21 |
"""
|
| 22 |
-
|
| 23 |
grid = np.mgrid[
|
| 24 |
slice(-x_count, x_count, x_count * 1j),
|
| 25 |
slice(-y_count, y_count, y_count * 1j),
|
|
|
|
| 1 |
+
from collections import namedtuple # noqa: D100
|
| 2 |
from math import cos, sin
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
ColorGrid = namedtuple("ColorGrid", ["positions", "colors"])
|
| 7 |
|
| 8 |
|
| 9 |
+
def build_color_grid(
|
| 10 |
+
x_count: int = 10, y_count: int = 10, z_count: int = 10, twist: int = 0
|
| 11 |
+
) -> ColorGrid:
|
| 12 |
"""
|
| 13 |
Create a cube of points with colors.
|
| 14 |
|
|
|
|
| 22 |
Angle to twist from bottom to top of the cube
|
| 23 |
|
| 24 |
"""
|
|
|
|
| 25 |
grid = np.mgrid[
|
| 26 |
slice(-x_count, x_count, x_count * 1j),
|
| 27 |
slice(-y_count, y_count, y_count * 1j),
|
css.css
CHANGED
|
@@ -135,11 +135,11 @@ h6 {
|
|
| 135 |
letter-spacing: 0px !important;
|
| 136 |
}
|
| 137 |
|
| 138 |
-
#start .md
|
| 139 |
margin-top: 0;
|
| 140 |
}
|
| 141 |
|
| 142 |
-
h2
|
| 143 |
margin-top: 0;
|
| 144 |
}
|
| 145 |
|
|
@@ -148,10 +148,11 @@ h2 + h3 {
|
|
| 148 |
border-top: 1px solid var(--block-border-color);
|
| 149 |
margin: var(--vspace-2) 0 var(--vspace-2) 0;
|
| 150 |
}
|
|
|
|
| 151 |
.prose ul {
|
| 152 |
margin: var(--vspace-2) 0 var(--vspace-1) 0;
|
| 153 |
}
|
| 154 |
|
| 155 |
.gap {
|
| 156 |
gap: 0;
|
| 157 |
-
}
|
|
|
|
| 135 |
letter-spacing: 0px !important;
|
| 136 |
}
|
| 137 |
|
| 138 |
+
#start .md>*:first-child {
|
| 139 |
margin-top: 0;
|
| 140 |
}
|
| 141 |
|
| 142 |
+
h2+h3 {
|
| 143 |
margin-top: 0;
|
| 144 |
}
|
| 145 |
|
|
|
|
| 148 |
border-top: 1px solid var(--block-border-color);
|
| 149 |
margin: var(--vspace-2) 0 var(--vspace-2) 0;
|
| 150 |
}
|
| 151 |
+
|
| 152 |
.prose ul {
|
| 153 |
margin: var(--vspace-2) 0 var(--vspace-1) 0;
|
| 154 |
}
|
| 155 |
|
| 156 |
.gap {
|
| 157 |
gap: 0;
|
| 158 |
+
}
|
examples/rgbd.rrd
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62a765f41f2779e7975290773ae2f24131eca986e9f7c9b829fbc0020900c422
|
| 3 |
+
size 18464608
|
examples/rrt-star.rrd
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c7f1b7882df70a58e8544718941550a5dbf9252502b448e0a0318150b2d1442
|
| 3 |
+
size 6173062
|
examples/structure_from_motion.rrd
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a2c5f3808f43cc42d8f06587157ed87f555cb8ac363d65cc2fbe15521e21618
|
| 3 |
+
size 6898468
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
gradio_rerun
|
| 2 |
opencv-python
|
|
|
|
| 1 |
+
gradio_rerun>=0.23.0
|
| 2 |
opencv-python
|
space.py
CHANGED
|
@@ -1,9 +1,134 @@
|
|
| 1 |
-
|
| 2 |
import gradio as gr
|
| 3 |
from app import demo as app
|
| 4 |
import os
|
| 5 |
|
| 6 |
-
_docs = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
|
| 9 |
|
|
@@ -17,18 +142,21 @@ with gr.Blocks(
|
|
| 17 |
),
|
| 18 |
) as demo:
|
| 19 |
gr.Markdown(
|
| 20 |
-
"""
|
| 21 |
# `gradio_rerun`
|
| 22 |
|
| 23 |
<div style="display: flex; gap: 7px;">
|
| 24 |
-
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/
|
| 25 |
</div>
|
| 26 |
|
| 27 |
Rerun viewer with Gradio
|
| 28 |
-
""",
|
|
|
|
|
|
|
|
|
|
| 29 |
app.render()
|
| 30 |
gr.Markdown(
|
| 31 |
-
"""
|
| 32 |
## Installation
|
| 33 |
|
| 34 |
```bash
|
|
@@ -38,22 +166,37 @@ pip install gradio_rerun
|
|
| 38 |
## Usage
|
| 39 |
|
| 40 |
```python
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
import os
|
| 43 |
import tempfile
|
| 44 |
import time
|
|
|
|
| 45 |
|
|
|
|
| 46 |
import gradio as gr
|
| 47 |
-
from gradio_rerun import Rerun
|
| 48 |
-
|
| 49 |
import rerun as rr
|
| 50 |
import rerun.blueprint as rrb
|
| 51 |
-
|
| 52 |
from color_grid import build_color_grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
#
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
@@ -61,9 +204,10 @@ from color_grid import build_color_grid
|
|
| 61 |
#
|
| 62 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 63 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
if img is None:
|
| 69 |
raise gr.Error("Must provide an image to blur.")
|
|
@@ -76,23 +220,19 @@ def streaming_repeated_blur(img):
|
|
| 76 |
collapse_panels=True,
|
| 77 |
)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
rr.log("image/original", rr.Image(img))
|
| 84 |
yield stream.read()
|
| 85 |
|
| 86 |
blur = img
|
| 87 |
-
|
| 88 |
for i in range(100):
|
| 89 |
-
|
| 90 |
|
| 91 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 92 |
time.sleep(0.1)
|
| 93 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 94 |
-
|
| 95 |
-
rr.log("image/blurred", rr.Image(blur))
|
| 96 |
|
| 97 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 98 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
@@ -100,6 +240,87 @@ def streaming_repeated_blur(img):
|
|
| 100 |
yield stream.read()
|
| 101 |
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 104 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 105 |
#
|
|
@@ -107,12 +328,15 @@ def streaming_repeated_blur(img):
|
|
| 107 |
# be easily modified to stream data directly via Gradio.
|
| 108 |
#
|
| 109 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 110 |
-
# don't accumulate too many
|
| 111 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 112 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 113 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 114 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 115 |
|
|
|
|
|
|
|
|
|
|
| 116 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 117 |
# any pending files to be cleaned up when the state is deleted.
|
| 118 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
@@ -126,7 +350,7 @@ def create_cube_rrd(x, y, z, pending_cleanup):
|
|
| 126 |
return temp.name
|
| 127 |
|
| 128 |
|
| 129 |
-
def cleanup_cube_rrds(pending_cleanup):
|
| 130 |
for f in pending_cleanup:
|
| 131 |
os.unlink(f)
|
| 132 |
|
|
@@ -137,6 +361,7 @@ with gr.Blocks() as demo:
|
|
| 137 |
img = gr.Image(interactive=True, label="Image")
|
| 138 |
with gr.Column():
|
| 139 |
stream_blur = gr.Button("Stream Repeated Blur")
|
|
|
|
| 140 |
with gr.Row():
|
| 141 |
viewer = Rerun(
|
| 142 |
streaming=True,
|
|
@@ -146,22 +371,35 @@ with gr.Blocks() as demo:
|
|
| 146 |
"selection": "hidden",
|
| 147 |
},
|
| 148 |
)
|
| 149 |
-
stream_blur.click(streaming_repeated_blur, inputs=[img], outputs=[viewer])
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
with gr.Row():
|
| 156 |
-
x_count = gr.Number(
|
| 157 |
-
|
| 158 |
-
)
|
| 159 |
-
y_count = gr.Number(
|
| 160 |
-
minimum=1, maximum=10, value=5, precision=0, label="Y Count"
|
| 161 |
-
)
|
| 162 |
-
z_count = gr.Number(
|
| 163 |
-
minimum=1, maximum=10, value=5, precision=0, label="Z Count"
|
| 164 |
-
)
|
| 165 |
with gr.Row():
|
| 166 |
create_rrd = gr.Button("Create RRD")
|
| 167 |
with gr.Row():
|
|
@@ -201,27 +439,36 @@ with gr.Blocks() as demo:
|
|
| 201 |
},
|
| 202 |
)
|
| 203 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
|
|
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
| 207 |
demo.launch()
|
| 208 |
|
| 209 |
```
|
| 210 |
-
""",
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
gr.Markdown(
|
|
|
|
| 214 |
## `Rerun`
|
| 215 |
|
| 216 |
### Initialization
|
| 217 |
-
""",
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
|
|
|
| 222 |
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
gr.Markdown(
|
|
|
|
| 225 |
|
| 226 |
### User function
|
| 227 |
|
|
@@ -232,8 +479,8 @@ The impact on the users predict function varies depending on whether the compone
|
|
| 232 |
|
| 233 |
The code snippet below is accurate in cases where the component is used as both an input and an output.
|
| 234 |
|
| 235 |
-
- **As input:** Is passed, a RerunData object.
|
| 236 |
-
- **As output:** Should return,
|
| 237 |
|
| 238 |
```python
|
| 239 |
def predict(
|
|
@@ -241,19 +488,25 @@ def predict(
|
|
| 241 |
) -> list[pathlib.Path | str] | pathlib.Path | str | bytes:
|
| 242 |
return value
|
| 243 |
```
|
| 244 |
-
""",
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
|
| 249 |
-
code_RerunData = gr.Markdown(
|
|
|
|
| 250 |
## `RerunData`
|
| 251 |
```python
|
| 252 |
class RerunData(GradioRootModel):
|
| 253 |
-
root:
|
| 254 |
-
```""",
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
demo.load(
|
|
|
|
|
|
|
| 257 |
const refs = {
|
| 258 |
RerunData: [], };
|
| 259 |
const user_fn_refs = {
|
|
@@ -288,6 +541,7 @@ class RerunData(GradioRootModel):
|
|
| 288 |
})
|
| 289 |
}
|
| 290 |
|
| 291 |
-
"""
|
|
|
|
| 292 |
|
| 293 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from app import demo as app
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
_docs = {
|
| 6 |
+
"Rerun": {
|
| 7 |
+
"description": "Creates a Rerun viewer component that can be used to display the output of a Rerun stream.",
|
| 8 |
+
"members": {
|
| 9 |
+
"__init__": {
|
| 10 |
+
"value": {
|
| 11 |
+
"type": "list[pathlib.Path | str]\n | pathlib.Path\n | str\n | bytes\n | collections.abc.Callable\n | None",
|
| 12 |
+
"default": "None",
|
| 13 |
+
"description": "Takes a singular or list of RRD resources. Each RRD can be a Path, a string containing a url,",
|
| 14 |
+
},
|
| 15 |
+
"label": {
|
| 16 |
+
"type": "str | None",
|
| 17 |
+
"default": "None",
|
| 18 |
+
"description": "The label for this component. Appears above the component and is also used as the header if there",
|
| 19 |
+
},
|
| 20 |
+
"every": {
|
| 21 |
+
"type": "float | None",
|
| 22 |
+
"default": "None",
|
| 23 |
+
"description": "If `value` is a callable, run the function 'every' number of seconds while the client connection is",
|
| 24 |
+
},
|
| 25 |
+
"show_label": {
|
| 26 |
+
"type": "bool | None",
|
| 27 |
+
"default": "None",
|
| 28 |
+
"description": "if True, will display label.",
|
| 29 |
+
},
|
| 30 |
+
"container": {
|
| 31 |
+
"type": "bool",
|
| 32 |
+
"default": "True",
|
| 33 |
+
"description": "If True, will place the component in a container providing some extra padding around the border.",
|
| 34 |
+
},
|
| 35 |
+
"scale": {
|
| 36 |
+
"type": "int | None",
|
| 37 |
+
"default": "None",
|
| 38 |
+
"description": "relative size compared to adjacent Components.",
|
| 39 |
+
},
|
| 40 |
+
"min_width": {
|
| 41 |
+
"type": "int",
|
| 42 |
+
"default": "160",
|
| 43 |
+
"description": "minimum pixel width, will wrap if not sufficient screen space to satisfy this value.",
|
| 44 |
+
},
|
| 45 |
+
"height": {
|
| 46 |
+
"type": "int | str",
|
| 47 |
+
"default": "640",
|
| 48 |
+
"description": "height of component in pixels. If a string is provided, will be interpreted as a CSS value.",
|
| 49 |
+
},
|
| 50 |
+
"visible": {
|
| 51 |
+
"type": "bool",
|
| 52 |
+
"default": "True",
|
| 53 |
+
"description": "If False, component will be hidden.",
|
| 54 |
+
},
|
| 55 |
+
"streaming": {
|
| 56 |
+
"type": "bool",
|
| 57 |
+
"default": "False",
|
| 58 |
+
"description": "If True, the data should be incrementally yielded from the source as `bytes` returned by",
|
| 59 |
+
},
|
| 60 |
+
"elem_id": {
|
| 61 |
+
"type": "str | None",
|
| 62 |
+
"default": "None",
|
| 63 |
+
"description": "An optional string that is assigned as the id of this component in the HTML DOM.",
|
| 64 |
+
},
|
| 65 |
+
"elem_classes": {
|
| 66 |
+
"type": "list[str] | str | None",
|
| 67 |
+
"default": "None",
|
| 68 |
+
"description": "An optional list of strings that are assigned as the classes of this component in",
|
| 69 |
+
},
|
| 70 |
+
"render": {
|
| 71 |
+
"type": "bool",
|
| 72 |
+
"default": "True",
|
| 73 |
+
"description": "If False, component will not render be rendered in the Blocks context.",
|
| 74 |
+
},
|
| 75 |
+
"panel_states": {
|
| 76 |
+
"type": "dict[str, typing.Any] | None",
|
| 77 |
+
"default": "None",
|
| 78 |
+
"description": "Force viewer panels to a specific state.",
|
| 79 |
+
},
|
| 80 |
+
},
|
| 81 |
+
"postprocess": {
|
| 82 |
+
"value": {
|
| 83 |
+
"type": "list[pathlib.Path | str] | pathlib.Path | str | bytes",
|
| 84 |
+
"description": "The value to send over to the Rerun viewer on the front-end.",
|
| 85 |
+
}
|
| 86 |
+
},
|
| 87 |
+
"preprocess": {
|
| 88 |
+
"return": {
|
| 89 |
+
"type": "RerunData | None",
|
| 90 |
+
"description": "A `RerunData` object.",
|
| 91 |
+
},
|
| 92 |
+
"value": None,
|
| 93 |
+
},
|
| 94 |
+
},
|
| 95 |
+
"events": {
|
| 96 |
+
"play": {
|
| 97 |
+
"type": None,
|
| 98 |
+
"default": None,
|
| 99 |
+
"description": "Fired when timeline playback starts. Callback should accept a parameter of type `gradio_rerun.events.Play`",
|
| 100 |
+
},
|
| 101 |
+
"pause": {
|
| 102 |
+
"type": None,
|
| 103 |
+
"default": None,
|
| 104 |
+
"description": "Fired when timeline pauseback starts. Callback should accept a parameter of type `gradio_rerun.events.Pause`",
|
| 105 |
+
},
|
| 106 |
+
"time_update": {
|
| 107 |
+
"type": None,
|
| 108 |
+
"default": None,
|
| 109 |
+
"description": "Fired when time updates. Callback should accept a parameter of type `gradio_rerun.events.TimeUpdate`.",
|
| 110 |
+
},
|
| 111 |
+
"timeline_change": {
|
| 112 |
+
"type": None,
|
| 113 |
+
"default": None,
|
| 114 |
+
"description": "Fired when a timeline is selected. Callback should accept a parameter of type `gradio_rerun.events.TimelineChange`.",
|
| 115 |
+
},
|
| 116 |
+
"selection_change": {
|
| 117 |
+
"type": None,
|
| 118 |
+
"default": None,
|
| 119 |
+
"description": "Fired when the selection changes. Callback should accept a parameter of type `gradio_rerun.events.SelectionChange`.",
|
| 120 |
+
},
|
| 121 |
+
},
|
| 122 |
+
},
|
| 123 |
+
"__meta__": {
|
| 124 |
+
"additional_interfaces": {
|
| 125 |
+
"RerunData": {
|
| 126 |
+
"source": "class RerunData(GradioRootModel):\n root: Sequence[FileData | Path | str] | None"
|
| 127 |
+
}
|
| 128 |
+
},
|
| 129 |
+
"user_fn_refs": {"Rerun": ["RerunData"]},
|
| 130 |
+
},
|
| 131 |
+
}
|
| 132 |
|
| 133 |
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
|
| 134 |
|
|
|
|
| 142 |
),
|
| 143 |
) as demo:
|
| 144 |
gr.Markdown(
|
| 145 |
+
"""
|
| 146 |
# `gradio_rerun`
|
| 147 |
|
| 148 |
<div style="display: flex; gap: 7px;">
|
| 149 |
+
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/rerun-io/gradio-rerun-viewer/issues" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/Issues-white?logo=github&logoColor=black"></a> <a href="https://huggingface.co/spaces/rerun/gradio-rerun-viewer/discussions" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Discuss-%23097EFF?style=flat&logoColor=black"></a>
|
| 150 |
</div>
|
| 151 |
|
| 152 |
Rerun viewer with Gradio
|
| 153 |
+
""",
|
| 154 |
+
elem_classes=["md-custom"],
|
| 155 |
+
header_links=True,
|
| 156 |
+
)
|
| 157 |
app.render()
|
| 158 |
gr.Markdown(
|
| 159 |
+
"""
|
| 160 |
## Installation
|
| 161 |
|
| 162 |
```bash
|
|
|
|
| 166 |
## Usage
|
| 167 |
|
| 168 |
```python
|
| 169 |
+
\"\"\"
|
| 170 |
+
Demonstrates integrating Rerun visualization with Gradio.
|
| 171 |
+
|
| 172 |
+
Provides example implementations of data streaming, keypoint annotation, and dynamic
|
| 173 |
+
visualization across multiple Gradio tabs using Rerun's recording and visualization capabilities.
|
| 174 |
+
\"\"\"
|
| 175 |
+
|
| 176 |
+
import math
|
| 177 |
import os
|
| 178 |
import tempfile
|
| 179 |
import time
|
| 180 |
+
import uuid
|
| 181 |
|
| 182 |
+
import cv2
|
| 183 |
import gradio as gr
|
|
|
|
|
|
|
| 184 |
import rerun as rr
|
| 185 |
import rerun.blueprint as rrb
|
|
|
|
| 186 |
from color_grid import build_color_grid
|
| 187 |
+
from gradio_rerun import Rerun
|
| 188 |
+
from gradio_rerun.events import (
|
| 189 |
+
SelectionChange,
|
| 190 |
+
TimelineChange,
|
| 191 |
+
TimeUpdate,
|
| 192 |
+
)
|
| 193 |
|
| 194 |
+
|
| 195 |
+
# Whenever we need a recording, we construct a new recording stream.
|
| 196 |
+
# As long as the app and recording IDs remain the same, the data
|
| 197 |
+
# will be merged by the Viewer.
|
| 198 |
+
def get_recording(recording_id: str) -> rr.RecordingStream:
|
| 199 |
+
return rr.RecordingStream(application_id="rerun_example_gradio", recording_id=recording_id)
|
| 200 |
|
| 201 |
|
| 202 |
# A task can directly log to a binary stream, which is routed to the embedded viewer.
|
|
|
|
| 204 |
#
|
| 205 |
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
|
| 206 |
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
|
| 207 |
+
def streaming_repeated_blur(recording_id: str, img):
|
| 208 |
+
# Here we get a recording using the provided recording id.
|
| 209 |
+
rec = get_recording(recording_id)
|
| 210 |
+
stream = rec.binary_stream()
|
| 211 |
|
| 212 |
if img is None:
|
| 213 |
raise gr.Error("Must provide an image to blur.")
|
|
|
|
| 220 |
collapse_panels=True,
|
| 221 |
)
|
| 222 |
|
| 223 |
+
rec.send_blueprint(blueprint)
|
| 224 |
+
rec.set_time("iteration", sequence=0)
|
| 225 |
+
rec.log("image/original", rr.Image(img))
|
|
|
|
|
|
|
| 226 |
yield stream.read()
|
| 227 |
|
| 228 |
blur = img
|
|
|
|
| 229 |
for i in range(100):
|
| 230 |
+
rec.set_time("iteration", sequence=i)
|
| 231 |
|
| 232 |
# Pretend blurring takes a while so we can see streaming in action.
|
| 233 |
time.sleep(0.1)
|
| 234 |
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
| 235 |
+
rec.log("image/blurred", rr.Image(blur))
|
|
|
|
| 236 |
|
| 237 |
# Each time we yield bytes from the stream back to Gradio, they
|
| 238 |
# are incrementally sent to the viewer. Make sure to yield any time
|
|
|
|
| 240 |
yield stream.read()
|
| 241 |
|
| 242 |
|
| 243 |
+
# In this example the user is able to add keypoints to an image visualized in Rerun.
|
| 244 |
+
# These keypoints are stored in the global state, we use the session id to keep track of which keypoints belong
|
| 245 |
+
# to a specific session (https://www.gradio.app/guides/state-in-blocks).
|
| 246 |
+
#
|
| 247 |
+
# The current session can be obtained by adding a parameter of type `gradio.Request` to your event listener functions.
|
| 248 |
+
Keypoint = tuple[float, float]
|
| 249 |
+
keypoints_per_session_per_sequence_index: dict[str, dict[int, list[Keypoint]]] = {}
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def get_keypoints_for_user_at_sequence_index(request: gr.Request, sequence: int) -> list[Keypoint]:
|
| 253 |
+
per_sequence = keypoints_per_session_per_sequence_index[request.session_hash]
|
| 254 |
+
if sequence not in per_sequence:
|
| 255 |
+
per_sequence[sequence] = []
|
| 256 |
+
|
| 257 |
+
return per_sequence[sequence]
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def initialize_instance(request: gr.Request) -> None:
|
| 261 |
+
keypoints_per_session_per_sequence_index[request.session_hash] = {}
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def cleanup_instance(request: gr.Request) -> None:
|
| 265 |
+
if request.session_hash in keypoints_per_session_per_sequence_index:
|
| 266 |
+
del keypoints_per_session_per_sequence_index[request.session_hash]
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this
|
| 270 |
+
# event listener is fired.
|
| 271 |
+
#
|
| 272 |
+
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
|
| 273 |
+
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
|
| 274 |
+
def register_keypoint(
|
| 275 |
+
active_recording_id: str,
|
| 276 |
+
current_timeline: str,
|
| 277 |
+
current_time: float,
|
| 278 |
+
request: gr.Request,
|
| 279 |
+
change: SelectionChange,
|
| 280 |
+
):
|
| 281 |
+
if active_recording_id == "":
|
| 282 |
+
return
|
| 283 |
+
|
| 284 |
+
if current_timeline != "iteration":
|
| 285 |
+
return
|
| 286 |
+
|
| 287 |
+
evt = change.payload
|
| 288 |
+
|
| 289 |
+
# We can only log a keypoint if the user selected only a single item.
|
| 290 |
+
if len(evt.items) != 1:
|
| 291 |
+
return
|
| 292 |
+
item = evt.items[0]
|
| 293 |
+
|
| 294 |
+
# If the selected item isn't an entity, or we don't have its position, then bail out.
|
| 295 |
+
if item.type != "entity" or item.position is None:
|
| 296 |
+
return
|
| 297 |
+
|
| 298 |
+
# Now we can produce a valid keypoint.
|
| 299 |
+
rec = get_recording(active_recording_id)
|
| 300 |
+
stream = rec.binary_stream()
|
| 301 |
+
|
| 302 |
+
# We round `current_time` toward 0, because that gives us the sequence index
|
| 303 |
+
# that the user is currently looking at, due to the Viewer's latest-at semantics.
|
| 304 |
+
index = math.floor(current_time)
|
| 305 |
+
|
| 306 |
+
# We keep track of the keypoints per sequence index for each user manually.
|
| 307 |
+
keypoints = get_keypoints_for_user_at_sequence_index(request, index)
|
| 308 |
+
keypoints.append(item.position[0:2])
|
| 309 |
+
|
| 310 |
+
rec.set_time("iteration", sequence=index)
|
| 311 |
+
rec.log(f"{item.entity_path}/keypoint", rr.Points2D(keypoints, radii=2))
|
| 312 |
+
|
| 313 |
+
yield stream.read()
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def track_current_time(evt: TimeUpdate):
|
| 317 |
+
return evt.payload.time
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def track_current_timeline_and_time(evt: TimelineChange):
|
| 321 |
+
return evt.payload.timeline, evt.payload.time
|
| 322 |
+
|
| 323 |
+
|
| 324 |
# However, if you have a workflow that creates an RRD file instead, you can still send it
|
| 325 |
# directly to the viewer by simply returning the path to the RRD file.
|
| 326 |
#
|
|
|
|
| 328 |
# be easily modified to stream data directly via Gradio.
|
| 329 |
#
|
| 330 |
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
|
| 331 |
+
# don't accumulate too many temporary files.
|
| 332 |
@rr.thread_local_stream("rerun_example_cube_rrd")
|
| 333 |
def create_cube_rrd(x, y, z, pending_cleanup):
|
| 334 |
cube = build_color_grid(int(x), int(y), int(z), twist=0)
|
| 335 |
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
|
| 336 |
|
| 337 |
+
# Simulate delay
|
| 338 |
+
time.sleep(x / 10)
|
| 339 |
+
|
| 340 |
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
|
| 341 |
# any pending files to be cleaned up when the state is deleted.
|
| 342 |
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
|
|
|
|
| 350 |
return temp.name
|
| 351 |
|
| 352 |
|
| 353 |
+
def cleanup_cube_rrds(pending_cleanup: list[str]) -> None:
|
| 354 |
for f in pending_cleanup:
|
| 355 |
os.unlink(f)
|
| 356 |
|
|
|
|
| 361 |
img = gr.Image(interactive=True, label="Image")
|
| 362 |
with gr.Column():
|
| 363 |
stream_blur = gr.Button("Stream Repeated Blur")
|
| 364 |
+
|
| 365 |
with gr.Row():
|
| 366 |
viewer = Rerun(
|
| 367 |
streaming=True,
|
|
|
|
| 371 |
"selection": "hidden",
|
| 372 |
},
|
| 373 |
)
|
|
|
|
| 374 |
|
| 375 |
+
# We make a new recording id, and store it in a Gradio's session state.
|
| 376 |
+
recording_id = gr.State(uuid.uuid4())
|
| 377 |
+
|
| 378 |
+
# Also store the current timeline and time of the viewer in the session state.
|
| 379 |
+
current_timeline = gr.State("")
|
| 380 |
+
current_time = gr.State(0.0)
|
| 381 |
+
|
| 382 |
+
# When registering the event listeners, we pass the `recording_id` in as input in order to create
|
| 383 |
+
# a recording stream using that id.
|
| 384 |
+
stream_blur.click(
|
| 385 |
+
# Using the `viewer` as an output allows us to stream data to it by yielding bytes from the callback.
|
| 386 |
+
streaming_repeated_blur,
|
| 387 |
+
inputs=[recording_id, img],
|
| 388 |
+
outputs=[viewer],
|
| 389 |
)
|
| 390 |
+
viewer.selection_change(
|
| 391 |
+
register_keypoint,
|
| 392 |
+
inputs=[recording_id, current_timeline, current_time],
|
| 393 |
+
outputs=[viewer],
|
| 394 |
+
)
|
| 395 |
+
viewer.time_update(track_current_time, outputs=[current_time])
|
| 396 |
+
viewer.timeline_change(track_current_timeline_and_time, outputs=[current_timeline, current_time])
|
| 397 |
+
with gr.Tab("Dynamic RRD"):
|
| 398 |
+
pending_cleanup = gr.State([], time_to_live=10, delete_callback=cleanup_cube_rrds)
|
| 399 |
with gr.Row():
|
| 400 |
+
x_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="X Count")
|
| 401 |
+
y_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Y Count")
|
| 402 |
+
z_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Z Count")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
with gr.Row():
|
| 404 |
create_rrd = gr.Button("Create RRD")
|
| 405 |
with gr.Row():
|
|
|
|
| 439 |
},
|
| 440 |
)
|
| 441 |
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
|
| 442 |
+
demo.load(initialize_instance)
|
| 443 |
+
demo.close(cleanup_instance)
|
| 444 |
|
| 445 |
|
| 446 |
if __name__ == "__main__":
|
| 447 |
demo.launch()
|
| 448 |
|
| 449 |
```
|
| 450 |
+
""",
|
| 451 |
+
elem_classes=["md-custom"],
|
| 452 |
+
header_links=True,
|
| 453 |
+
)
|
| 454 |
|
| 455 |
+
gr.Markdown(
|
| 456 |
+
"""
|
| 457 |
## `Rerun`
|
| 458 |
|
| 459 |
### Initialization
|
| 460 |
+
""",
|
| 461 |
+
elem_classes=["md-custom"],
|
| 462 |
+
header_links=True,
|
| 463 |
+
)
|
| 464 |
|
| 465 |
+
gr.ParamViewer(value=_docs["Rerun"]["members"]["__init__"], linkify=["RerunData"])
|
| 466 |
|
| 467 |
+
gr.Markdown("### Events")
|
| 468 |
+
gr.ParamViewer(value=_docs["Rerun"]["events"], linkify=["Event"])
|
| 469 |
|
| 470 |
+
gr.Markdown(
|
| 471 |
+
"""
|
| 472 |
|
| 473 |
### User function
|
| 474 |
|
|
|
|
| 479 |
|
| 480 |
The code snippet below is accurate in cases where the component is used as both an input and an output.
|
| 481 |
|
| 482 |
+
- **As input:** Is passed, a `RerunData` object.
|
| 483 |
+
- **As output:** Should return, the value to send over to the Rerun viewer on the front-end.
|
| 484 |
|
| 485 |
```python
|
| 486 |
def predict(
|
|
|
|
| 488 |
) -> list[pathlib.Path | str] | pathlib.Path | str | bytes:
|
| 489 |
return value
|
| 490 |
```
|
| 491 |
+
""",
|
| 492 |
+
elem_classes=["md-custom", "Rerun-user-fn"],
|
| 493 |
+
header_links=True,
|
| 494 |
+
)
|
| 495 |
|
| 496 |
+
code_RerunData = gr.Markdown(
|
| 497 |
+
"""
|
| 498 |
## `RerunData`
|
| 499 |
```python
|
| 500 |
class RerunData(GradioRootModel):
|
| 501 |
+
root: Sequence[FileData | Path | str] | None
|
| 502 |
+
```""",
|
| 503 |
+
elem_classes=["md-custom", "RerunData"],
|
| 504 |
+
header_links=True,
|
| 505 |
+
)
|
| 506 |
|
| 507 |
+
demo.load(
|
| 508 |
+
None,
|
| 509 |
+
js=r"""function() {
|
| 510 |
const refs = {
|
| 511 |
RerunData: [], };
|
| 512 |
const user_fn_refs = {
|
|
|
|
| 541 |
})
|
| 542 |
}
|
| 543 |
|
| 544 |
+
""",
|
| 545 |
+
)
|
| 546 |
|
| 547 |
demo.launch()
|