Nina.Konovalova
commited on
Commit
·
ef5bd5d
1
Parent(s):
f5adbed
main
Browse files- app.py +245 -0
- inference_pb2.py +40 -0
- inference_pb2_grpc.py +97 -0
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from io import BytesIO
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import grpc
|
6 |
+
from PIL import Image
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
|
12 |
+
from io import BytesIO
|
13 |
+
from inference_pb2 import LoraRequest, LoraResponse
|
14 |
+
from inference_pb2_grpc import LoraServiceStub
|
15 |
+
import grpc
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
PREFIX = "/home/jovyan/bobkov/lora_demo/DEMO/"
|
20 |
+
|
21 |
+
info = {
|
22 |
+
'image': PREFIX + 'demo/{0}/{0}.jpg',
|
23 |
+
'weights_path': PREFIX + 'demo_results/flux-lora-{0}_aug-rank16',
|
24 |
+
'caption': PREFIX + 'demo/{0}_aug/data.csv',
|
25 |
+
'aug_path': PREFIX + 'demo/{0}_aug_filter/'
|
26 |
+
}
|
27 |
+
|
28 |
+
params = {
|
29 |
+
'cup': {'switch_t' : 7, 'aug_image' : None, 'checkpoint' : 1000},
|
30 |
+
'face_lifting': {'switch_t' : 7, 'aug_image' : None, 'checkpoint' : 1000},
|
31 |
+
'coffe_machine': {'switch_t' : 7, 'aug_image' : None, 'checkpoint' : 1000},
|
32 |
+
'kettle': {'switch_t' : 3, 'aug_image' : None, 'checkpoint' : 1000},
|
33 |
+
'body_lotion': {'switch_t' : 7, 'aug_image' : None, 'checkpoint' : 1000},
|
34 |
+
'toy': {'switch_t' : 3, 'aug_image' : None, 'checkpoint' : 1000},
|
35 |
+
'bag': {'switch_t' : 3, 'aug_image' : None, 'checkpoint' : 1000},
|
36 |
+
'armchair': {'switch_t' : 3, 'aug_image' : None, 'checkpoint' : 600},
|
37 |
+
'pendant': {'switch_t' : -1, 'aug_image' : None, 'checkpoint' : 1000},
|
38 |
+
'car': {'switch_t' : 7, 'aug_image' : 'car_aug_2.jpg', 'checkpoint' : 600},
|
39 |
+
}
|
40 |
+
|
41 |
+
table = pd.read_csv("/home/jovyan/bobkov/lora_demo/DEMO/demo/data.csv")
|
42 |
+
CAPTIONS = {}
|
43 |
+
for line in table.values:
|
44 |
+
CAPTIONS[line[0]] = line[1]
|
45 |
+
|
46 |
+
|
47 |
+
def bytes_to_image(image: bytes) -> Image.Image:
|
48 |
+
image = Image.open(BytesIO(image))
|
49 |
+
return image
|
50 |
+
|
51 |
+
|
52 |
+
def generate_image(concept, prompt, progress=gr.Progress(track_tqdm=True)):
|
53 |
+
with grpc.insecure_channel(os.environ["SERVER"]) as channel:
|
54 |
+
stub = LoraServiceStub(channel)
|
55 |
+
|
56 |
+
output = stub.generate(
|
57 |
+
LoraRequest(prompt=prompt, concept=concept, use_cache=False)
|
58 |
+
)
|
59 |
+
|
60 |
+
return gr.update(value=bytes_to_image(output.res1)), gr.update(), gr.update(), gr.update()
|
61 |
+
|
62 |
+
|
63 |
+
temaplte = """
|
64 |
+
<div style="font-size: 18px;">
|
65 |
+
<b>Product description:</b> {}
|
66 |
+
</div>
|
67 |
+
"""
|
68 |
+
|
69 |
+
|
70 |
+
def action1():
|
71 |
+
concept = "kettle" #############
|
72 |
+
img = Image.open(info["image"].format(concept))
|
73 |
+
description = temaplte.format(CAPTIONS[concept])
|
74 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
75 |
+
|
76 |
+
def action2():
|
77 |
+
concept = "face_lifting" ###################
|
78 |
+
img = Image.open(info["image"].format(concept))
|
79 |
+
description = temaplte.format(CAPTIONS[concept])
|
80 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
81 |
+
|
82 |
+
def action3():
|
83 |
+
concept = "pendant" #############
|
84 |
+
img = Image.open(info["image"].format(concept))
|
85 |
+
description = temaplte.format(CAPTIONS[concept])
|
86 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
87 |
+
|
88 |
+
def action4():
|
89 |
+
concept = "car"
|
90 |
+
img = Image.open(info["image"].format(concept))
|
91 |
+
description = temaplte.format(CAPTIONS[concept])
|
92 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
93 |
+
|
94 |
+
def action5():
|
95 |
+
concept = "body_lotion" #################
|
96 |
+
img = Image.open(info["image"].format(concept))
|
97 |
+
description = temaplte.format(CAPTIONS[concept])
|
98 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
99 |
+
|
100 |
+
def action6():
|
101 |
+
concept = "toy" ############
|
102 |
+
img = Image.open(info["image"].format(concept))
|
103 |
+
description = temaplte.format(CAPTIONS[concept])
|
104 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
105 |
+
|
106 |
+
def action7():
|
107 |
+
concept = "bag" ##############
|
108 |
+
img = Image.open(info["image"].format(concept))
|
109 |
+
description = temaplte.format(CAPTIONS[concept])
|
110 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
111 |
+
|
112 |
+
def action8():
|
113 |
+
concept = "armchair" ############
|
114 |
+
img = Image.open(info["image"].format(concept))
|
115 |
+
description = temaplte.format(CAPTIONS[concept])
|
116 |
+
return gr.update(value=img, visible=True), gr.update(value=description, visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=concept)
|
117 |
+
|
118 |
+
|
119 |
+
css2 = """
|
120 |
+
|
121 |
+
.my-custom-button {
|
122 |
+
width: 100px; /* Button size */
|
123 |
+
height: 130px;
|
124 |
+
padding: 0; /* Remove default padding */
|
125 |
+
margin: 0px; /* Optional spacing between buttons */
|
126 |
+
display: flex;
|
127 |
+
align-items: center;
|
128 |
+
justify-content: center;
|
129 |
+
background-color: transparent;
|
130 |
+
border: none;
|
131 |
+
overflow: hidden; /* Ensures the image doesn't overflow */
|
132 |
+
--text-xl: 150px
|
133 |
+
}
|
134 |
+
|
135 |
+
.my-custom-button img {
|
136 |
+
max-width: 100%;
|
137 |
+
max-height: 100%;
|
138 |
+
object-fit: contain; /* Ensure icon scales properly */
|
139 |
+
}
|
140 |
+
|
141 |
+
.input_image_container {
|
142 |
+
width: 350px !important;
|
143 |
+
height: 350px !important;
|
144 |
+
overflow: hidden;
|
145 |
+
display: flex;
|
146 |
+
align-items: center;
|
147 |
+
justify-content: center;
|
148 |
+
background-color: #f0f0f0;
|
149 |
+
}
|
150 |
+
.input_image_container img {
|
151 |
+
max-width: 100%;
|
152 |
+
max-height: 100%;
|
153 |
+
width: 350px;
|
154 |
+
height: 350px;
|
155 |
+
object-fit: contain;
|
156 |
+
display: block;
|
157 |
+
margin: 0 auto;
|
158 |
+
}
|
159 |
+
|
160 |
+
.prompt input {
|
161 |
+
font-size: 20px;
|
162 |
+
}
|
163 |
+
|
164 |
+
.prompt input::placeholder {
|
165 |
+
font-size: 20px;
|
166 |
+
}
|
167 |
+
|
168 |
+
.prompt label {
|
169 |
+
font-size: 20px !important;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
|
173 |
+
def get_demo():
|
174 |
+
with gr.Blocks(css="""
|
175 |
+
.centered {
|
176 |
+
display: flex;
|
177 |
+
justify-content: center;
|
178 |
+
align-items: center;
|
179 |
+
height: 100%;
|
180 |
+
}
|
181 |
+
.centered img {
|
182 |
+
margin: auto;
|
183 |
+
object-fit: contain;
|
184 |
+
}
|
185 |
+
""" + css2) as demo:
|
186 |
+
gr.Markdown("## Showcase Commercial Products with Stunning Natural Backgrounds")
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column(elem_classes=["centered"]):
|
189 |
+
with gr.Row():
|
190 |
+
btn1 = gr.Button("", icon=info["image"].format("kettle"), elem_classes=["my-custom-button"])
|
191 |
+
btn2 = gr.Button("", icon=info["image"].format("face_lifting"), elem_classes=["my-custom-button"])
|
192 |
+
btn3 = gr.Button("", icon=info["image"].format("pendant"), elem_classes=["my-custom-button"])
|
193 |
+
btn4 = gr.Button("", icon=info["image"].format("car"), elem_classes=["my-custom-button"])
|
194 |
+
|
195 |
+
with gr.Row():
|
196 |
+
btn5 = gr.Button("", icon=info["image"].format("body_lotion"), elem_classes=["my-custom-button"])
|
197 |
+
btn6 = gr.Button("", icon=info["image"].format("toy"), elem_classes=["my-custom-button"])
|
198 |
+
btn7 = gr.Button("", icon=info["image"].format("bag"), elem_classes=["my-custom-button"])
|
199 |
+
btn8 = gr.Button("", icon=info["image"].format("armchair"), elem_classes=["my-custom-button"])
|
200 |
+
|
201 |
+
prod_desc = gr.Markdown(value="""<div style="font-size: 20px;">Choose the product you want to showcase </div"> 🠕""", visible=True)
|
202 |
+
|
203 |
+
input_image = gr.Image(label="Chosen product", type="pil", height=300, width=300, visible=False, interactive=False, container=True, elem_classes=["input_image_container"])
|
204 |
+
descr = gr.Markdown(value=temaplte.format(""), visible=False)
|
205 |
+
|
206 |
+
concept = gr.Textbox("", visible=False)
|
207 |
+
prompt = gr.Textbox("", placeholder="is in the cozy kitchen", label="Describe the enviroment for your product", submit_btn=False, max_lines=1, visible=False, elem_classes=["prompt"])
|
208 |
+
|
209 |
+
btn_generate = gr.Button("Generate images", visible=False)
|
210 |
+
|
211 |
+
|
212 |
+
btn1.click(fn=action1, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
213 |
+
btn2.click(fn=action2, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
214 |
+
btn3.click(fn=action3, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
215 |
+
btn4.click(fn=action4, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
216 |
+
btn5.click(fn=action5, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
217 |
+
btn6.click(fn=action6, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
218 |
+
btn7.click(fn=action7, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
219 |
+
btn8.click(fn=action8, outputs=[input_image, descr, prod_desc, prompt, btn_generate, concept])
|
220 |
+
|
221 |
+
with gr.Column():
|
222 |
+
with gr.Row():
|
223 |
+
res1 = gr.Image(label="Result", visible=True)#, height=450, width=450)
|
224 |
+
res2 = gr.Image(label="Result 2", visible=False)
|
225 |
+
with gr.Row():
|
226 |
+
res3 = gr.Image(label="Result 2", visible=False, height=450, width=450)
|
227 |
+
res4 = gr.Image(label="Result 4", visible=False) #<div style="text-align: center; font-size: 18px;">
|
228 |
+
gr.Markdown('''
|
229 |
+
<div style="display: flex; align-items: center; gap: 10px; font-size: 20px; text-align: center; margin-left: 200px;">
|
230 |
+
<div>Made by FusionBrainLab, AIRI</div><img src="https://static.tildacdn.com/tild3633-6662-4437-a333-646631346335/Airinet.png" style="width: 70px; height: auto;">
|
231 |
+
</div>
|
232 |
+
''')
|
233 |
+
|
234 |
+
btn_generate.click(
|
235 |
+
fn=generate_image,
|
236 |
+
inputs=[concept, prompt],
|
237 |
+
outputs=[res1, res2, res3, res4] # font-family: Arial, sans-serif;
|
238 |
+
)
|
239 |
+
|
240 |
+
return demo
|
241 |
+
|
242 |
+
|
243 |
+
if __name__ == '__main__':
|
244 |
+
demo = get_demo()
|
245 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
inference_pb2.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
3 |
+
# NO CHECKED-IN PROTOBUF GENCODE
|
4 |
+
# source: inference.proto
|
5 |
+
# Protobuf Python Version: 6.31.0
|
6 |
+
"""Generated protocol buffer code."""
|
7 |
+
from google.protobuf import descriptor as _descriptor
|
8 |
+
from google.protobuf import descriptor_pool as _descriptor_pool
|
9 |
+
from google.protobuf import runtime_version as _runtime_version
|
10 |
+
from google.protobuf import symbol_database as _symbol_database
|
11 |
+
from google.protobuf.internal import builder as _builder
|
12 |
+
_runtime_version.ValidateProtobufRuntimeVersion(
|
13 |
+
_runtime_version.Domain.PUBLIC,
|
14 |
+
6,
|
15 |
+
31,
|
16 |
+
0,
|
17 |
+
'',
|
18 |
+
'inference.proto'
|
19 |
+
)
|
20 |
+
# @@protoc_insertion_point(imports)
|
21 |
+
|
22 |
+
_sym_db = _symbol_database.Default()
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0finference.proto\x12\tinference\"A\n\x0bLoraRequest\x12\x0f\n\x07\x63oncept\x18\x01 \x01(\t\x12\x0e\n\x06prompt\x18\x02 \x01(\t\x12\x11\n\tuse_cache\x18\x03 \x01(\x08\"F\n\x0cLoraResponse\x12\x0c\n\x04res1\x18\x01 \x01(\x0c\x12\x0c\n\x04res2\x18\x02 \x01(\x0c\x12\x0c\n\x04res3\x18\x03 \x01(\x0c\x12\x0c\n\x04res4\x18\x04 \x01(\x0c\x32J\n\x0bLoraService\x12;\n\x08generate\x12\x16.inference.LoraRequest\x1a\x17.inference.LoraResponseb\x06proto3')
|
28 |
+
|
29 |
+
_globals = globals()
|
30 |
+
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
31 |
+
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'inference_pb2', _globals)
|
32 |
+
if not _descriptor._USE_C_DESCRIPTORS:
|
33 |
+
DESCRIPTOR._loaded_options = None
|
34 |
+
_globals['_LORAREQUEST']._serialized_start=30
|
35 |
+
_globals['_LORAREQUEST']._serialized_end=95
|
36 |
+
_globals['_LORARESPONSE']._serialized_start=97
|
37 |
+
_globals['_LORARESPONSE']._serialized_end=167
|
38 |
+
_globals['_LORASERVICE']._serialized_start=169
|
39 |
+
_globals['_LORASERVICE']._serialized_end=243
|
40 |
+
# @@protoc_insertion_point(module_scope)
|
inference_pb2_grpc.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
2 |
+
"""Client and server classes corresponding to protobuf-defined services."""
|
3 |
+
import grpc
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import inference_pb2 as inference__pb2
|
7 |
+
|
8 |
+
GRPC_GENERATED_VERSION = '1.73.1'
|
9 |
+
GRPC_VERSION = grpc.__version__
|
10 |
+
_version_not_supported = False
|
11 |
+
|
12 |
+
try:
|
13 |
+
from grpc._utilities import first_version_is_lower
|
14 |
+
_version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
|
15 |
+
except ImportError:
|
16 |
+
_version_not_supported = True
|
17 |
+
|
18 |
+
if _version_not_supported:
|
19 |
+
raise RuntimeError(
|
20 |
+
f'The grpc package installed is at version {GRPC_VERSION},'
|
21 |
+
+ f' but the generated code in inference_pb2_grpc.py depends on'
|
22 |
+
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
|
23 |
+
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
|
24 |
+
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
class LoraServiceStub(object):
|
29 |
+
"""Missing associated documentation comment in .proto file."""
|
30 |
+
|
31 |
+
def __init__(self, channel):
|
32 |
+
"""Constructor.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
channel: A grpc.Channel.
|
36 |
+
"""
|
37 |
+
self.generate = channel.unary_unary(
|
38 |
+
'/inference.LoraService/generate',
|
39 |
+
request_serializer=inference__pb2.LoraRequest.SerializeToString,
|
40 |
+
response_deserializer=inference__pb2.LoraResponse.FromString,
|
41 |
+
_registered_method=True)
|
42 |
+
|
43 |
+
|
44 |
+
class LoraServiceServicer(object):
|
45 |
+
"""Missing associated documentation comment in .proto file."""
|
46 |
+
|
47 |
+
def generate(self, request, context):
|
48 |
+
"""Missing associated documentation comment in .proto file."""
|
49 |
+
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
50 |
+
context.set_details('Method not implemented!')
|
51 |
+
raise NotImplementedError('Method not implemented!')
|
52 |
+
|
53 |
+
|
54 |
+
def add_LoraServiceServicer_to_server(servicer, server):
|
55 |
+
rpc_method_handlers = {
|
56 |
+
'generate': grpc.unary_unary_rpc_method_handler(
|
57 |
+
servicer.generate,
|
58 |
+
request_deserializer=inference__pb2.LoraRequest.FromString,
|
59 |
+
response_serializer=inference__pb2.LoraResponse.SerializeToString,
|
60 |
+
),
|
61 |
+
}
|
62 |
+
generic_handler = grpc.method_handlers_generic_handler(
|
63 |
+
'inference.LoraService', rpc_method_handlers)
|
64 |
+
server.add_generic_rpc_handlers((generic_handler,))
|
65 |
+
server.add_registered_method_handlers('inference.LoraService', rpc_method_handlers)
|
66 |
+
|
67 |
+
|
68 |
+
# This class is part of an EXPERIMENTAL API.
|
69 |
+
class LoraService(object):
|
70 |
+
"""Missing associated documentation comment in .proto file."""
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def generate(request,
|
74 |
+
target,
|
75 |
+
options=(),
|
76 |
+
channel_credentials=None,
|
77 |
+
call_credentials=None,
|
78 |
+
insecure=False,
|
79 |
+
compression=None,
|
80 |
+
wait_for_ready=None,
|
81 |
+
timeout=None,
|
82 |
+
metadata=None):
|
83 |
+
return grpc.experimental.unary_unary(
|
84 |
+
request,
|
85 |
+
target,
|
86 |
+
'/inference.LoraService/generate',
|
87 |
+
inference__pb2.LoraRequest.SerializeToString,
|
88 |
+
inference__pb2.LoraResponse.FromString,
|
89 |
+
options,
|
90 |
+
channel_credentials,
|
91 |
+
insecure,
|
92 |
+
call_credentials,
|
93 |
+
compression,
|
94 |
+
wait_for_ready,
|
95 |
+
timeout,
|
96 |
+
metadata,
|
97 |
+
_registered_method=True)
|