Kevin Hu
mv service_conf.yaml to conf/ and fix: add 'answer' as a parameter to 'generate' (#3379)
587bed3
| # | |
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import json | |
| import os | |
| import sys | |
| import time | |
| import argparse | |
| from collections import defaultdict | |
| from api.db import LLMType | |
| from api.db.services.llm_service import LLMBundle | |
| from api.db.services.knowledgebase_service import KnowledgebaseService | |
| from api.settings import retrievaler, docStoreConn | |
| from api.utils import get_uuid | |
| from rag.nlp import tokenize, search | |
| from ranx import evaluate | |
| import pandas as pd | |
| from tqdm import tqdm | |
| global max_docs | |
| max_docs = sys.maxsize | |
| class Benchmark: | |
| def __init__(self, kb_id): | |
| self.kb_id = kb_id | |
| e, self.kb = KnowledgebaseService.get_by_id(kb_id) | |
| self.similarity_threshold = self.kb.similarity_threshold | |
| self.vector_similarity_weight = self.kb.vector_similarity_weight | |
| self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language) | |
| self.tenant_id = '' | |
| self.index_name = '' | |
| self.initialized_index = False | |
| def _get_retrieval(self, qrels): | |
| # Need to wait for the ES and Infinity index to be ready | |
| time.sleep(20) | |
| run = defaultdict(dict) | |
| query_list = list(qrels.keys()) | |
| for query in query_list: | |
| ranks = retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30, | |
| 0.0, self.vector_similarity_weight) | |
| if len(ranks["chunks"]) == 0: | |
| print(f"deleted query: {query}") | |
| del qrels[query] | |
| continue | |
| for c in ranks["chunks"]: | |
| if "vector" in c: | |
| del c["vector"] | |
| run[query][c["chunk_id"]] = c["similarity"] | |
| return run | |
| def embedding(self, docs, batch_size=16): | |
| vects = [] | |
| cnts = [d["content_with_weight"] for d in docs] | |
| for i in range(0, len(cnts), batch_size): | |
| vts, c = self.embd_mdl.encode(cnts[i: i + batch_size]) | |
| vects.extend(vts.tolist()) | |
| assert len(docs) == len(vects) | |
| vector_size = 0 | |
| for i, d in enumerate(docs): | |
| v = vects[i] | |
| vector_size = len(v) | |
| d["q_%d_vec" % len(v)] = v | |
| return docs, vector_size | |
| def init_index(self, vector_size: int): | |
| if self.initialized_index: | |
| return | |
| if docStoreConn.indexExist(self.index_name, self.kb_id): | |
| docStoreConn.deleteIdx(self.index_name, self.kb_id) | |
| docStoreConn.createIdx(self.index_name, self.kb_id, vector_size) | |
| self.initialized_index = True | |
| def ms_marco_index(self, file_path, index_name): | |
| qrels = defaultdict(dict) | |
| texts = defaultdict(dict) | |
| docs_count = 0 | |
| docs = [] | |
| filelist = sorted(os.listdir(file_path)) | |
| for fn in filelist: | |
| if docs_count >= max_docs: | |
| break | |
| if not fn.endswith(".parquet"): | |
| continue | |
| data = pd.read_parquet(os.path.join(file_path, fn)) | |
| for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn): | |
| if docs_count >= max_docs: | |
| break | |
| query = data.iloc[i]['query'] | |
| for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']): | |
| d = { | |
| "id": get_uuid(), | |
| "kb_id": self.kb.id, | |
| "docnm_kwd": "xxxxx", | |
| "doc_id": "ksksks" | |
| } | |
| tokenize(d, text, "english") | |
| docs.append(d) | |
| texts[d["id"]] = text | |
| qrels[query][d["id"]] = int(rel) | |
| if len(docs) >= 32: | |
| docs_count += len(docs) | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs, self.index_name, self.kb_id) | |
| docs = [] | |
| if docs: | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs, self.index_name, self.kb_id) | |
| return qrels, texts | |
| def trivia_qa_index(self, file_path, index_name): | |
| qrels = defaultdict(dict) | |
| texts = defaultdict(dict) | |
| docs_count = 0 | |
| docs = [] | |
| filelist = sorted(os.listdir(file_path)) | |
| for fn in filelist: | |
| if docs_count >= max_docs: | |
| break | |
| if not fn.endswith(".parquet"): | |
| continue | |
| data = pd.read_parquet(os.path.join(file_path, fn)) | |
| for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn): | |
| if docs_count >= max_docs: | |
| break | |
| query = data.iloc[i]['question'] | |
| for rel, text in zip(data.iloc[i]["search_results"]['rank'], | |
| data.iloc[i]["search_results"]['search_context']): | |
| d = { | |
| "id": get_uuid(), | |
| "kb_id": self.kb.id, | |
| "docnm_kwd": "xxxxx", | |
| "doc_id": "ksksks" | |
| } | |
| tokenize(d, text, "english") | |
| docs.append(d) | |
| texts[d["id"]] = text | |
| qrels[query][d["id"]] = int(rel) | |
| if len(docs) >= 32: | |
| docs_count += len(docs) | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs,self.index_name) | |
| docs = [] | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs, self.index_name) | |
| return qrels, texts | |
| def miracl_index(self, file_path, corpus_path, index_name): | |
| corpus_total = {} | |
| for corpus_file in os.listdir(corpus_path): | |
| tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True) | |
| for index, i in tmp_data.iterrows(): | |
| corpus_total[i['docid']] = i['text'] | |
| topics_total = {} | |
| for topics_file in os.listdir(os.path.join(file_path, 'topics')): | |
| if 'test' in topics_file: | |
| continue | |
| tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query']) | |
| for index, i in tmp_data.iterrows(): | |
| topics_total[i['qid']] = i['query'] | |
| qrels = defaultdict(dict) | |
| texts = defaultdict(dict) | |
| docs_count = 0 | |
| docs = [] | |
| for qrels_file in os.listdir(os.path.join(file_path, 'qrels')): | |
| if 'test' in qrels_file: | |
| continue | |
| if docs_count >= max_docs: | |
| break | |
| tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t', | |
| names=['qid', 'Q0', 'docid', 'relevance']) | |
| for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file): | |
| if docs_count >= max_docs: | |
| break | |
| query = topics_total[tmp_data.iloc[i]['qid']] | |
| text = corpus_total[tmp_data.iloc[i]['docid']] | |
| rel = tmp_data.iloc[i]['relevance'] | |
| d = { | |
| "id": get_uuid(), | |
| "kb_id": self.kb.id, | |
| "docnm_kwd": "xxxxx", | |
| "doc_id": "ksksks" | |
| } | |
| tokenize(d, text, 'english') | |
| docs.append(d) | |
| texts[d["id"]] = text | |
| qrels[query][d["id"]] = int(rel) | |
| if len(docs) >= 32: | |
| docs_count += len(docs) | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs, self.index_name) | |
| docs = [] | |
| docs, vector_size = self.embedding(docs) | |
| self.init_index(vector_size) | |
| docStoreConn.insert(docs, self.index_name) | |
| return qrels, texts | |
| def save_results(self, qrels, run, texts, dataset, file_path): | |
| keep_result = [] | |
| run_keys = list(run.keys()) | |
| for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"): | |
| key = run_keys[run_i] | |
| keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key], | |
| 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")}) | |
| keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10']) | |
| with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f: | |
| f.write('## Score For Every Query\n') | |
| for keep_result_i in keep_result: | |
| f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n') | |
| scores = [[i[0], i[1]] for i in keep_result_i['run'].items()] | |
| scores = sorted(scores, key=lambda kk: kk[1]) | |
| for score in scores[:10]: | |
| f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n') | |
| json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2) | |
| json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2) | |
| print(os.path.join(file_path, dataset + '_result.md'), 'Saved!') | |
| def __call__(self, dataset, file_path, miracl_corpus=''): | |
| if dataset == "ms_marco_v1.1": | |
| self.tenant_id = "benchmark_ms_marco_v11" | |
| self.index_name = search.index_name(self.tenant_id) | |
| qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1") | |
| run = self._get_retrieval(qrels) | |
| print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
| self.save_results(qrels, run, texts, dataset, file_path) | |
| if dataset == "trivia_qa": | |
| self.tenant_id = "benchmark_trivia_qa" | |
| self.index_name = search.index_name(self.tenant_id) | |
| qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa") | |
| run = self._get_retrieval(qrels) | |
| print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
| self.save_results(qrels, run, texts, dataset, file_path) | |
| if dataset == "miracl": | |
| for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', | |
| 'yo', 'zh']: | |
| if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)): | |
| print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!') | |
| continue | |
| if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')): | |
| print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!') | |
| continue | |
| if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')): | |
| print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!') | |
| continue | |
| if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)): | |
| print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!') | |
| continue | |
| self.tenant_id = "benchmark_miracl_" + lang | |
| self.index_name = search.index_name(self.tenant_id) | |
| self.initialized_index = False | |
| qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang), | |
| os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang), | |
| "benchmark_miracl_" + lang) | |
| run = self._get_retrieval(qrels) | |
| print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"])) | |
| self.save_results(qrels, run, texts, dataset, file_path) | |
| if __name__ == '__main__': | |
| print('*****************RAGFlow Benchmark*****************') | |
| parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark') | |
| parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate') | |
| parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id') | |
| parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl') | |
| parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path') | |
| parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl') | |
| args = parser.parse_args() | |
| max_docs = args.max_docs | |
| kb_id = args.kb_id | |
| ex = Benchmark(kb_id) | |
| dataset = args.dataset | |
| dataset_path = args.dataset_path | |
| if dataset == "ms_marco_v1.1" or dataset == "trivia_qa": | |
| ex(dataset, dataset_path) | |
| elif dataset == "miracl": | |
| if len(args) < 5: | |
| print('Please input the correct parameters!') | |
| exit(1) | |
| miracl_corpus_path = args[4] | |
| ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path) | |
| else: | |
| print("Dataset: ", dataset, "not supported!") | |