|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import base64 | 
					
						
						|  | import datetime | 
					
						
						|  | import json | 
					
						
						|  | import re | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import requests | 
					
						
						|  | from api.db.services.knowledgebase_service import KnowledgebaseService | 
					
						
						|  | from rag.nlp import rag_tokenizer | 
					
						
						|  | from deepdoc.parser.resume import refactor | 
					
						
						|  | from deepdoc.parser.resume import step_one, step_two | 
					
						
						|  | from rag.utils import rmSpace | 
					
						
						|  |  | 
					
						
						|  | forbidden_select_fields4resume = [ | 
					
						
						|  | "name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd" | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def remote_call(filename, binary): | 
					
						
						|  | q = { | 
					
						
						|  | "header": { | 
					
						
						|  | "uid": 1, | 
					
						
						|  | "user": "kevinhu", | 
					
						
						|  | "log_id": filename | 
					
						
						|  | }, | 
					
						
						|  | "request": { | 
					
						
						|  | "p": { | 
					
						
						|  | "request_id": "1", | 
					
						
						|  | "encrypt_type": "base64", | 
					
						
						|  | "filename": filename, | 
					
						
						|  | "langtype": '', | 
					
						
						|  | "fileori": base64.b64encode(binary).decode('utf-8') | 
					
						
						|  | }, | 
					
						
						|  | "c": "resume_parse_module", | 
					
						
						|  | "m": "resume_parse" | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  | for _ in range(3): | 
					
						
						|  | try: | 
					
						
						|  | resume = requests.post( | 
					
						
						|  | "http://127.0.0.1:61670/tog", | 
					
						
						|  | data=json.dumps(q)) | 
					
						
						|  | resume = resume.json()["response"]["results"] | 
					
						
						|  | resume = refactor(resume) | 
					
						
						|  | for k in ["education", "work", "project", | 
					
						
						|  | "training", "skill", "certificate", "language"]: | 
					
						
						|  | if not resume.get(k) and k in resume: | 
					
						
						|  | del resume[k] | 
					
						
						|  |  | 
					
						
						|  | resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x", | 
					
						
						|  | "updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}])) | 
					
						
						|  | resume = step_two.parse(resume) | 
					
						
						|  | return resume | 
					
						
						|  | except Exception: | 
					
						
						|  | logging.exception("Resume parser has not been supported yet!") | 
					
						
						|  | return {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def chunk(filename, binary=None, callback=None, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | The supported file formats are pdf, docx and txt. | 
					
						
						|  | To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow | 
					
						
						|  | """ | 
					
						
						|  | if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE): | 
					
						
						|  | raise NotImplementedError("file type not supported yet(pdf supported)") | 
					
						
						|  |  | 
					
						
						|  | if not binary: | 
					
						
						|  | with open(filename, "rb") as f: | 
					
						
						|  | binary = f.read() | 
					
						
						|  |  | 
					
						
						|  | callback(0.2, "Resume parsing is going on...") | 
					
						
						|  | resume = remote_call(filename, binary) | 
					
						
						|  | if len(resume.keys()) < 7: | 
					
						
						|  | callback(-1, "Resume is not successfully parsed.") | 
					
						
						|  | raise Exception("Resume parser remote call fail!") | 
					
						
						|  | callback(0.6, "Done parsing. Chunking...") | 
					
						
						|  | logging.debug("chunking resume: " + json.dumps(resume, ensure_ascii=False, indent=2)) | 
					
						
						|  |  | 
					
						
						|  | field_map = { | 
					
						
						|  | "name_kwd": "姓名/名字", | 
					
						
						|  | "name_pinyin_kwd": "姓名拼音/名字拼音", | 
					
						
						|  | "gender_kwd": "性别(男,女)", | 
					
						
						|  | "age_int": "年龄/岁/年纪", | 
					
						
						|  | "phone_kwd": "电话/手机/微信", | 
					
						
						|  | "email_tks": "email/e-mail/邮箱", | 
					
						
						|  | "position_name_tks": "职位/职能/岗位/职责", | 
					
						
						|  | "expect_city_names_tks": "期望城市", | 
					
						
						|  | "work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年", | 
					
						
						|  | "corporation_name_tks": "最近就职(上班)的公司/上一家公司", | 
					
						
						|  |  | 
					
						
						|  | "first_school_name_tks": "第一学历毕业学校", | 
					
						
						|  | "first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | 
					
						
						|  | "highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | 
					
						
						|  | "first_major_tks": "第一学历专业", | 
					
						
						|  | "edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", | 
					
						
						|  |  | 
					
						
						|  | "degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | 
					
						
						|  | "major_tks": "学过的专业/过往专业", | 
					
						
						|  | "school_name_tks": "学校/毕业院校", | 
					
						
						|  | "sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)", | 
					
						
						|  | "edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", | 
					
						
						|  |  | 
					
						
						|  | "corp_nm_tks": "就职过的公司/之前的公司/上过班的公司", | 
					
						
						|  | "edu_end_int": "毕业年份", | 
					
						
						|  | "industry_name_tks": "所在行业", | 
					
						
						|  |  | 
					
						
						|  | "birth_dt": "生日/出生年份", | 
					
						
						|  | "expect_position_name_tks": "期望职位/期望职能/期望岗位", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | titles = [] | 
					
						
						|  | for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]: | 
					
						
						|  | v = resume.get(n, "") | 
					
						
						|  | if isinstance(v, list): | 
					
						
						|  | v = v[0] | 
					
						
						|  | if n.find("tks") > 0: | 
					
						
						|  | v = rmSpace(v) | 
					
						
						|  | titles.append(str(v)) | 
					
						
						|  | doc = { | 
					
						
						|  | "docnm_kwd": filename, | 
					
						
						|  | "title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历") | 
					
						
						|  | } | 
					
						
						|  | doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) | 
					
						
						|  | pairs = [] | 
					
						
						|  | for n, m in field_map.items(): | 
					
						
						|  | if not resume.get(n): | 
					
						
						|  | continue | 
					
						
						|  | v = resume[n] | 
					
						
						|  | if isinstance(v, list): | 
					
						
						|  | v = " ".join(v) | 
					
						
						|  | if n.find("tks") > 0: | 
					
						
						|  | v = rmSpace(v) | 
					
						
						|  | pairs.append((m, str(v))) | 
					
						
						|  |  | 
					
						
						|  | doc["content_with_weight"] = "\n".join( | 
					
						
						|  | ["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs]) | 
					
						
						|  | doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"]) | 
					
						
						|  | doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"]) | 
					
						
						|  | for n, _ in field_map.items(): | 
					
						
						|  | if n not in resume: | 
					
						
						|  | continue | 
					
						
						|  | if isinstance(resume[n], list) and ( | 
					
						
						|  | len(resume[n]) == 1 or n not in forbidden_select_fields4resume): | 
					
						
						|  | resume[n] = resume[n][0] | 
					
						
						|  | if n.find("_tks") > 0: | 
					
						
						|  | resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n]) | 
					
						
						|  | doc[n] = resume[n] | 
					
						
						|  |  | 
					
						
						|  | logging.debug("chunked resume to " + str(doc)) | 
					
						
						|  | KnowledgebaseService.update_parser_config( | 
					
						
						|  | kwargs["kb_id"], {"field_map": field_map}) | 
					
						
						|  | return [doc] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | import sys | 
					
						
						|  |  | 
					
						
						|  | def dummy(a, b): | 
					
						
						|  | pass | 
					
						
						|  | chunk(sys.argv[1], callback=dummy) | 
					
						
						|  |  |