| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						import traceback | 
					
					
						
						| 
							 | 
						from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait | 
					
					
						
						| 
							 | 
						from threading import Lock | 
					
					
						
						| 
							 | 
						from typing import Tuple | 
					
					
						
						| 
							 | 
						import umap | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from sklearn.mixture import GaussianMixture | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from rag.utils import num_tokens_from_string, truncate | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: | 
					
					
						
						| 
							 | 
						    def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1): | 
					
					
						
						| 
							 | 
						        self._max_cluster = max_cluster | 
					
					
						
						| 
							 | 
						        self._llm_model = llm_model | 
					
					
						
						| 
							 | 
						        self._embd_model = embd_model | 
					
					
						
						| 
							 | 
						        self._threshold = threshold | 
					
					
						
						| 
							 | 
						        self._prompt = prompt | 
					
					
						
						| 
							 | 
						        self._max_token = max_token | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int): | 
					
					
						
						| 
							 | 
						        max_clusters = min(self._max_cluster, len(embeddings)) | 
					
					
						
						| 
							 | 
						        n_clusters = np.arange(1, max_clusters) | 
					
					
						
						| 
							 | 
						        bics = [] | 
					
					
						
						| 
							 | 
						        for n in n_clusters: | 
					
					
						
						| 
							 | 
						            gm = GaussianMixture(n_components=n, random_state=random_state) | 
					
					
						
						| 
							 | 
						            gm.fit(embeddings) | 
					
					
						
						| 
							 | 
						            bics.append(gm.bic(embeddings)) | 
					
					
						
						| 
							 | 
						        optimal_clusters = n_clusters[np.argmin(bics)] | 
					
					
						
						| 
							 | 
						        return optimal_clusters | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None): | 
					
					
						
						| 
							 | 
						        layers = [(0, len(chunks))] | 
					
					
						
						| 
							 | 
						        start, end = 0, len(chunks) | 
					
					
						
						| 
							 | 
						        if len(chunks) <= 1: return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def summarize(ck_idx, lock): | 
					
					
						
						| 
							 | 
						            nonlocal chunks | 
					
					
						
						| 
							 | 
						            try: | 
					
					
						
						| 
							 | 
						                texts = [chunks[i][0] for i in ck_idx] | 
					
					
						
						| 
							 | 
						                len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts)) | 
					
					
						
						| 
							 | 
						                cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) | 
					
					
						
						| 
							 | 
						                cnt = self._llm_model.chat("You're a helpful assistant.", | 
					
					
						
						| 
							 | 
						                                             [{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}], | 
					
					
						
						| 
							 | 
						                                             {"temperature": 0.3, "max_tokens": self._max_token} | 
					
					
						
						| 
							 | 
						                                             ) | 
					
					
						
						| 
							 | 
						                cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "", cnt) | 
					
					
						
						| 
							 | 
						                print("SUM:", cnt) | 
					
					
						
						| 
							 | 
						                embds, _ = self._embd_model.encode([cnt]) | 
					
					
						
						| 
							 | 
						                with lock: | 
					
					
						
						| 
							 | 
						                    chunks.append((cnt, embds[0])) | 
					
					
						
						| 
							 | 
						            except Exception as e: | 
					
					
						
						| 
							 | 
						                print(e, flush=True) | 
					
					
						
						| 
							 | 
						                traceback.print_stack(e) | 
					
					
						
						| 
							 | 
						                return e | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        labels = [] | 
					
					
						
						| 
							 | 
						        while end - start > 1: | 
					
					
						
						| 
							 | 
						            embeddings = [embd for _, embd in chunks[start: end]] | 
					
					
						
						| 
							 | 
						            if len(embeddings) == 2: | 
					
					
						
						| 
							 | 
						                summarize([start, start+1], Lock()) | 
					
					
						
						| 
							 | 
						                if callback: | 
					
					
						
						| 
							 | 
						                    callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | 
					
					
						
						| 
							 | 
						                labels.extend([0,0]) | 
					
					
						
						| 
							 | 
						                layers.append((end, len(chunks))) | 
					
					
						
						| 
							 | 
						                start = end | 
					
					
						
						| 
							 | 
						                end = len(chunks) | 
					
					
						
						| 
							 | 
						                continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            n_neighbors = int((len(embeddings) - 1) ** 0.8) | 
					
					
						
						| 
							 | 
						            reduced_embeddings = umap.UMAP( | 
					
					
						
						| 
							 | 
						                n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine" | 
					
					
						
						| 
							 | 
						            ).fit_transform(embeddings) | 
					
					
						
						| 
							 | 
						            n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) | 
					
					
						
						| 
							 | 
						            if n_clusters == 1: | 
					
					
						
						| 
							 | 
						                lbls = [0 for _ in range(len(reduced_embeddings))] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                gm = GaussianMixture(n_components=n_clusters, random_state=random_state) | 
					
					
						
						| 
							 | 
						                gm.fit(reduced_embeddings) | 
					
					
						
						| 
							 | 
						                probs = gm.predict_proba(reduced_embeddings) | 
					
					
						
						| 
							 | 
						                lbls = [np.where(prob > self._threshold)[0] for prob in probs] | 
					
					
						
						| 
							 | 
						                lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] | 
					
					
						
						| 
							 | 
						            lock = Lock() | 
					
					
						
						| 
							 | 
						            with ThreadPoolExecutor(max_workers=12) as executor: | 
					
					
						
						| 
							 | 
						                threads = [] | 
					
					
						
						| 
							 | 
						                for c in range(n_clusters): | 
					
					
						
						| 
							 | 
						                    ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c] | 
					
					
						
						| 
							 | 
						                    threads.append(executor.submit(summarize, ck_idx, lock)) | 
					
					
						
						| 
							 | 
						                wait(threads, return_when=ALL_COMPLETED) | 
					
					
						
						| 
							 | 
						                print([t.result() for t in threads]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) | 
					
					
						
						| 
							 | 
						            labels.extend(lbls) | 
					
					
						
						| 
							 | 
						            layers.append((end, len(chunks))) | 
					
					
						
						| 
							 | 
						            if callback: | 
					
					
						
						| 
							 | 
						                callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | 
					
					
						
						| 
							 | 
						            start = end | 
					
					
						
						| 
							 | 
						            end = len(chunks) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |