|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from concurrent.futures import ThreadPoolExecutor | 
					
						
						|  | from copy import deepcopy | 
					
						
						|  |  | 
					
						
						|  | from api.db import LLMType | 
					
						
						|  | from api.db.services.llm_service import LLMBundle | 
					
						
						|  | from api.db.services.knowledgebase_service import KnowledgebaseService | 
					
						
						|  | from api.settings import retrievaler | 
					
						
						|  | from api.utils import get_uuid | 
					
						
						|  | from api.utils.file_utils import get_project_base_directory | 
					
						
						|  | from rag.nlp import tokenize, search | 
					
						
						|  | from rag.utils.es_conn import ELASTICSEARCH | 
					
						
						|  | from ranx import evaluate | 
					
						
						|  | import pandas as pd | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | from ranx import Qrels, Run | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Benchmark: | 
					
						
						|  | def __init__(self, kb_id): | 
					
						
						|  | e, self.kb = KnowledgebaseService.get_by_id(kb_id) | 
					
						
						|  | self.similarity_threshold = self.kb.similarity_threshold | 
					
						
						|  | self.vector_similarity_weight = self.kb.vector_similarity_weight | 
					
						
						|  | self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language) | 
					
						
						|  |  | 
					
						
						|  | def _get_benchmarks(self, query, dataset_idxnm, count=16): | 
					
						
						|  |  | 
					
						
						|  | req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold} | 
					
						
						|  | sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl) | 
					
						
						|  | return sres | 
					
						
						|  |  | 
					
						
						|  | def _get_retrieval(self, qrels, dataset_idxnm): | 
					
						
						|  | run = defaultdict(dict) | 
					
						
						|  | query_list = list(qrels.keys()) | 
					
						
						|  | for query in query_list: | 
					
						
						|  |  | 
					
						
						|  | ranks = retrievaler.retrieval(query, self.embd_mdl, | 
					
						
						|  | dataset_idxnm, [self.kb.id], 1, 30, | 
					
						
						|  | 0.0, self.vector_similarity_weight) | 
					
						
						|  | for c in ranks["chunks"]: | 
					
						
						|  | if "vector" in c: | 
					
						
						|  | del c["vector"] | 
					
						
						|  | run[query][c["chunk_id"]] = c["similarity"] | 
					
						
						|  |  | 
					
						
						|  | return run | 
					
						
						|  |  | 
					
						
						|  | def embedding(self, docs, batch_size=16): | 
					
						
						|  | vects = [] | 
					
						
						|  | cnts = [d["content_with_weight"] for d in docs] | 
					
						
						|  | for i in range(0, len(cnts), batch_size): | 
					
						
						|  | vts, c = self.embd_mdl.encode(cnts[i: i + batch_size]) | 
					
						
						|  | vects.extend(vts.tolist()) | 
					
						
						|  | assert len(docs) == len(vects) | 
					
						
						|  | for i, d in enumerate(docs): | 
					
						
						|  | v = vects[i] | 
					
						
						|  | d["q_%d_vec" % len(v)] = v | 
					
						
						|  | return docs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def init_kb(index_name): | 
					
						
						|  | idxnm = search.index_name(index_name) | 
					
						
						|  | if ELASTICSEARCH.indexExist(idxnm): | 
					
						
						|  | ELASTICSEARCH.deleteIdx(search.index_name(index_name)) | 
					
						
						|  |  | 
					
						
						|  | return ELASTICSEARCH.createIdx(idxnm, json.load( | 
					
						
						|  | open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r"))) | 
					
						
						|  |  | 
					
						
						|  | def ms_marco_index(self, file_path, index_name): | 
					
						
						|  | qrels = defaultdict(dict) | 
					
						
						|  | texts = defaultdict(dict) | 
					
						
						|  | docs = [] | 
					
						
						|  | filelist = os.listdir(file_path) | 
					
						
						|  | self.init_kb(index_name) | 
					
						
						|  |  | 
					
						
						|  | max_workers = int(os.environ.get('MAX_WORKERS', 3)) | 
					
						
						|  | exe = ThreadPoolExecutor(max_workers=max_workers) | 
					
						
						|  | threads = [] | 
					
						
						|  |  | 
					
						
						|  | def slow_actions(es_docs, idx_nm): | 
					
						
						|  | es_docs = self.embedding(es_docs) | 
					
						
						|  | ELASTICSEARCH.bulk(es_docs, idx_nm) | 
					
						
						|  | return True | 
					
						
						|  |  | 
					
						
						|  | for dir in filelist: | 
					
						
						|  | data = pd.read_parquet(os.path.join(file_path, dir)) | 
					
						
						|  | for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + dir): | 
					
						
						|  |  | 
					
						
						|  | query = data.iloc[i]['query'] | 
					
						
						|  | for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']): | 
					
						
						|  | d = { | 
					
						
						|  | "id": get_uuid(), | 
					
						
						|  | "kb_id": self.kb.id, | 
					
						
						|  | "docnm_kwd": "xxxxx", | 
					
						
						|  | "doc_id": "ksksks" | 
					
						
						|  | } | 
					
						
						|  | tokenize(d, text, "english") | 
					
						
						|  | docs.append(d) | 
					
						
						|  | texts[d["id"]] = text | 
					
						
						|  | qrels[query][d["id"]] = int(rel) | 
					
						
						|  | if len(docs) >= 32: | 
					
						
						|  | threads.append( | 
					
						
						|  | exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name))) | 
					
						
						|  | docs = [] | 
					
						
						|  |  | 
					
						
						|  | threads.append( | 
					
						
						|  | exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name))) | 
					
						
						|  |  | 
					
						
						|  | for i in tqdm(range(len(threads)), colour="red", desc="Indexing:" + dir): | 
					
						
						|  | if not threads[i].result().output: | 
					
						
						|  | print("Indexing error...") | 
					
						
						|  |  | 
					
						
						|  | return qrels, texts | 
					
						
						|  |  | 
					
						
						|  | def trivia_qa_index(self, file_path, index_name): | 
					
						
						|  | qrels = defaultdict(dict) | 
					
						
						|  | texts = defaultdict(dict) | 
					
						
						|  | docs = [] | 
					
						
						|  | filelist = os.listdir(file_path) | 
					
						
						|  | for dir in filelist: | 
					
						
						|  | data = pd.read_parquet(os.path.join(file_path, dir)) | 
					
						
						|  | for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir): | 
					
						
						|  | query = data.iloc[i]['question'] | 
					
						
						|  | for rel, text in zip(data.iloc[i]["search_results"]['rank'], | 
					
						
						|  | data.iloc[i]["search_results"]['search_context']): | 
					
						
						|  | d = { | 
					
						
						|  | "id": get_uuid(), | 
					
						
						|  | "kb_id": self.kb.id, | 
					
						
						|  | "docnm_kwd": "xxxxx", | 
					
						
						|  | "doc_id": "ksksks" | 
					
						
						|  | } | 
					
						
						|  | tokenize(d, text, "english") | 
					
						
						|  | docs.append(d) | 
					
						
						|  | texts[d["id"]] = text | 
					
						
						|  | qrels[query][d["id"]] = int(rel) | 
					
						
						|  | if len(docs) >= 32: | 
					
						
						|  | docs = self.embedding(docs) | 
					
						
						|  | ELASTICSEARCH.bulk(docs, search.index_name(index_name)) | 
					
						
						|  | docs = [] | 
					
						
						|  |  | 
					
						
						|  | docs = self.embedding(docs) | 
					
						
						|  | ELASTICSEARCH.bulk(docs, search.index_name(index_name)) | 
					
						
						|  | return qrels, texts | 
					
						
						|  |  | 
					
						
						|  | def miracl_index(self, file_path, corpus_path, index_name): | 
					
						
						|  |  | 
					
						
						|  | corpus_total = {} | 
					
						
						|  | for corpus_file in os.listdir(corpus_path): | 
					
						
						|  | tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True) | 
					
						
						|  | for index, i in tmp_data.iterrows(): | 
					
						
						|  | corpus_total[i['docid']] = i['text'] | 
					
						
						|  |  | 
					
						
						|  | topics_total = {} | 
					
						
						|  | for topics_file in os.listdir(os.path.join(file_path, 'topics')): | 
					
						
						|  | if 'test' in topics_file: | 
					
						
						|  | continue | 
					
						
						|  | tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query']) | 
					
						
						|  | for index, i in tmp_data.iterrows(): | 
					
						
						|  | topics_total[i['qid']] = i['query'] | 
					
						
						|  |  | 
					
						
						|  | qrels = defaultdict(dict) | 
					
						
						|  | texts = defaultdict(dict) | 
					
						
						|  | docs = [] | 
					
						
						|  | for qrels_file in os.listdir(os.path.join(file_path, 'qrels')): | 
					
						
						|  | if 'test' in qrels_file: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t', | 
					
						
						|  | names=['qid', 'Q0', 'docid', 'relevance']) | 
					
						
						|  | for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file): | 
					
						
						|  | query = topics_total[tmp_data.iloc[i]['qid']] | 
					
						
						|  | text = corpus_total[tmp_data.iloc[i]['docid']] | 
					
						
						|  | rel = tmp_data.iloc[i]['relevance'] | 
					
						
						|  | d = { | 
					
						
						|  | "id": get_uuid(), | 
					
						
						|  | "kb_id": self.kb.id, | 
					
						
						|  | "docnm_kwd": "xxxxx", | 
					
						
						|  | "doc_id": "ksksks" | 
					
						
						|  | } | 
					
						
						|  | tokenize(d, text, 'english') | 
					
						
						|  | docs.append(d) | 
					
						
						|  | texts[d["id"]] = text | 
					
						
						|  | qrels[query][d["id"]] = int(rel) | 
					
						
						|  | if len(docs) >= 32: | 
					
						
						|  | docs = self.embedding(docs) | 
					
						
						|  | ELASTICSEARCH.bulk(docs, search.index_name(index_name)) | 
					
						
						|  | docs = [] | 
					
						
						|  |  | 
					
						
						|  | docs = self.embedding(docs) | 
					
						
						|  | ELASTICSEARCH.bulk(docs, search.index_name(index_name)) | 
					
						
						|  |  | 
					
						
						|  | return qrels, texts | 
					
						
						|  |  | 
					
						
						|  | def save_results(self, qrels, run, texts, dataset, file_path): | 
					
						
						|  | keep_result = [] | 
					
						
						|  | run_keys = list(run.keys()) | 
					
						
						|  | for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"): | 
					
						
						|  | key = run_keys[run_i] | 
					
						
						|  | keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key], | 
					
						
						|  | 'ndcg@10': evaluate(Qrels({key: qrels[key]}), Run({key: run[key]}), "ndcg@10")}) | 
					
						
						|  | keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10']) | 
					
						
						|  | with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f: | 
					
						
						|  | f.write('## Score For Every Query\n') | 
					
						
						|  | for keep_result_i in keep_result: | 
					
						
						|  | f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n') | 
					
						
						|  | scores = [[i[0], i[1]] for i in keep_result_i['run'].items()] | 
					
						
						|  | scores = sorted(scores, key=lambda kk: kk[1]) | 
					
						
						|  | for score in scores[:10]: | 
					
						
						|  | f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n') | 
					
						
						|  | json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2) | 
					
						
						|  | json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2) | 
					
						
						|  | print(os.path.join(file_path, dataset + '_result.md'), 'Saved!') | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, dataset, file_path, miracl_corpus=''): | 
					
						
						|  | if dataset == "ms_marco_v1.1": | 
					
						
						|  | qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1") | 
					
						
						|  | run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1") | 
					
						
						|  | print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"])) | 
					
						
						|  | self.save_results(qrels, run, texts, dataset, file_path) | 
					
						
						|  | if dataset == "trivia_qa": | 
					
						
						|  | qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa") | 
					
						
						|  | run = self._get_retrieval(qrels, "benchmark_trivia_qa") | 
					
						
						|  | print(dataset, evaluate((qrels), Run(run), ["ndcg@10", "map@5", "mrr"])) | 
					
						
						|  | self.save_results(qrels, run, texts, dataset, file_path) | 
					
						
						|  | if dataset == "miracl": | 
					
						
						|  | for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', | 
					
						
						|  | 'yo', 'zh']: | 
					
						
						|  | if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)): | 
					
						
						|  | print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!') | 
					
						
						|  | continue | 
					
						
						|  | if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')): | 
					
						
						|  | print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!') | 
					
						
						|  | continue | 
					
						
						|  | if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')): | 
					
						
						|  | print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!') | 
					
						
						|  | continue | 
					
						
						|  | if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)): | 
					
						
						|  | print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!') | 
					
						
						|  | continue | 
					
						
						|  | qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang), | 
					
						
						|  | os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang), | 
					
						
						|  | "benchmark_miracl_" + lang) | 
					
						
						|  | run = self._get_retrieval(qrels, "benchmark_miracl_" + lang) | 
					
						
						|  | print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"])) | 
					
						
						|  | self.save_results(qrels, run, texts, dataset, file_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | print('*****************RAGFlow Benchmark*****************') | 
					
						
						|  | kb_id = input('Please input kb_id:\n') | 
					
						
						|  | ex = Benchmark(kb_id) | 
					
						
						|  | dataset = input( | 
					
						
						|  | 'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n') | 
					
						
						|  | if dataset in ['ms_marco_v1.1', 'trivia_qa']: | 
					
						
						|  | if dataset == "ms_marco_v1.1": | 
					
						
						|  | print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!") | 
					
						
						|  | dataset_path = input('Please input ' + dataset + ' dataset path:\n') | 
					
						
						|  | ex(dataset, dataset_path) | 
					
						
						|  | elif dataset == 'miracl': | 
					
						
						|  | dataset_path = input('Please input ' + dataset + ' dataset path:\n') | 
					
						
						|  | corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n') | 
					
						
						|  | ex(dataset, dataset_path, miracl_corpus=corpus_path) | 
					
						
						|  | else: | 
					
						
						|  | print("Dataset: ", dataset, "not supported!") | 
					
						
						|  |  |