Yinquan WANG
[Bug]: When use OpenAI chat model , raise ERROR: 'CompletionUsage' object has no attribute 'get' #2948 (#2949)
8efa7c5
| # | |
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| from openai.lib.azure import AzureOpenAI | |
| from zhipuai import ZhipuAI | |
| from dashscope import Generation | |
| from abc import ABC | |
| from openai import OpenAI | |
| import openai | |
| from ollama import Client | |
| from rag.nlp import is_english | |
| from rag.utils import num_tokens_from_string | |
| from groq import Groq | |
| import os | |
| import json | |
| import requests | |
| import asyncio | |
| class Base(ABC): | |
| def __init__(self, key, model_name, base_url): | |
| timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600)) | |
| self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| **gen_conf) | |
| ans = response.choices[0].message.content.strip() | |
| if response.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response.usage.total_tokens | |
| except openai.APIError as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| stream=True, | |
| **gen_conf) | |
| for resp in response: | |
| if not resp.choices: continue | |
| if not resp.choices[0].delta.content: | |
| resp.choices[0].delta.content = "" | |
| ans += resp.choices[0].delta.content | |
| total_tokens += 1 | |
| if not hasattr(resp, "usage") or not resp.usage: | |
| total_tokens = ( | |
| total_tokens | |
| + num_tokens_from_string(resp.choices[0].delta.content) | |
| ) | |
| elif isinstance(resp.usage, dict): | |
| total_tokens = resp.usage.get("total_tokens", total_tokens) | |
| else: total_tokens = resp.usage.total_tokens | |
| if resp.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| yield ans | |
| except openai.APIError as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class GptTurbo(Base): | |
| def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): | |
| if not base_url: base_url = "https://api.openai.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| class MoonshotChat(Base): | |
| def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): | |
| if not base_url: base_url = "https://api.moonshot.cn/v1" | |
| super().__init__(key, model_name, base_url) | |
| class XinferenceChat(Base): | |
| def __init__(self, key=None, model_name="", base_url=""): | |
| if not base_url: | |
| raise ValueError("Local llm url cannot be None") | |
| if base_url.split("/")[-1] != "v1": | |
| base_url = os.path.join(base_url, "v1") | |
| super().__init__(key, model_name, base_url) | |
| class HuggingFaceChat(Base): | |
| def __init__(self, key=None, model_name="", base_url=""): | |
| if not base_url: | |
| raise ValueError("Local llm url cannot be None") | |
| if base_url.split("/")[-1] != "v1": | |
| base_url = os.path.join(base_url, "v1") | |
| super().__init__(key, model_name, base_url) | |
| class DeepSeekChat(Base): | |
| def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"): | |
| if not base_url: base_url = "https://api.deepseek.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| class AzureChat(Base): | |
| def __init__(self, key, model_name, **kwargs): | |
| api_key = json.loads(key).get('api_key', '') | |
| api_version = json.loads(key).get('api_version', '2024-02-01') | |
| self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) | |
| self.model_name = model_name | |
| class BaiChuanChat(Base): | |
| def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"): | |
| if not base_url: | |
| base_url = "https://api.baichuan-ai.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| def _format_params(params): | |
| return { | |
| "temperature": params.get("temperature", 0.3), | |
| "max_tokens": params.get("max_tokens", 2048), | |
| "top_p": params.get("top_p", 0.85), | |
| } | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| extra_body={ | |
| "tools": [{ | |
| "type": "web_search", | |
| "web_search": { | |
| "enable": True, | |
| "search_mode": "performance_first" | |
| } | |
| }] | |
| }, | |
| **self._format_params(gen_conf)) | |
| ans = response.choices[0].message.content.strip() | |
| if response.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response.usage.total_tokens | |
| except openai.APIError as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| extra_body={ | |
| "tools": [{ | |
| "type": "web_search", | |
| "web_search": { | |
| "enable": True, | |
| "search_mode": "performance_first" | |
| } | |
| }] | |
| }, | |
| stream=True, | |
| **self._format_params(gen_conf)) | |
| for resp in response: | |
| if not resp.choices: continue | |
| if not resp.choices[0].delta.content: | |
| resp.choices[0].delta.content = "" | |
| ans += resp.choices[0].delta.content | |
| total_tokens = ( | |
| ( | |
| total_tokens | |
| + num_tokens_from_string(resp.choices[0].delta.content) | |
| ) | |
| if not hasattr(resp, "usage") | |
| else resp.usage["total_tokens"] | |
| ) | |
| if resp.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class QWenChat(Base): | |
| def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): | |
| import dashscope | |
| dashscope.api_key = key | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true' | |
| if not stream_flag: | |
| from http import HTTPStatus | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| response = Generation.call( | |
| self.model_name, | |
| messages=history, | |
| result_format='message', | |
| **gen_conf | |
| ) | |
| ans = "" | |
| tk_count = 0 | |
| if response.status_code == HTTPStatus.OK: | |
| ans += response.output.choices[0]['message']['content'] | |
| tk_count += response.usage.total_tokens | |
| if response.output.choices[0].get("finish_reason", "") == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, tk_count | |
| return "**ERROR**: " + response.message, tk_count | |
| else: | |
| g = self._chat_streamly(system, history, gen_conf, incremental_output=True) | |
| result_list = list(g) | |
| error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0] | |
| if len(error_msg_list) > 0: | |
| return "**ERROR**: " + "".join(error_msg_list) , 0 | |
| else: | |
| return "".join(result_list[:-1]), result_list[-1] | |
| def _chat_streamly(self, system, history, gen_conf, incremental_output=False): | |
| from http import HTTPStatus | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| ans = "" | |
| tk_count = 0 | |
| try: | |
| response = Generation.call( | |
| self.model_name, | |
| messages=history, | |
| result_format='message', | |
| stream=True, | |
| incremental_output=incremental_output, | |
| **gen_conf | |
| ) | |
| for resp in response: | |
| if resp.status_code == HTTPStatus.OK: | |
| ans = resp.output.choices[0]['message']['content'] | |
| tk_count = resp.usage.total_tokens | |
| if resp.output.choices[0].get("finish_reason", "") == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| yield ans | |
| else: | |
| yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find( | |
| "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**" | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield tk_count | |
| def chat_streamly(self, system, history, gen_conf): | |
| return self._chat_streamly(system, history, gen_conf) | |
| class ZhipuChat(Base): | |
| def __init__(self, key, model_name="glm-3-turbo", **kwargs): | |
| self.client = ZhipuAI(api_key=key) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| try: | |
| if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | |
| if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| **gen_conf | |
| ) | |
| ans = response.choices[0].message.content.strip() | |
| if response.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response.usage.total_tokens | |
| except Exception as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | |
| if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | |
| ans = "" | |
| tk_count = 0 | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| stream=True, | |
| **gen_conf | |
| ) | |
| for resp in response: | |
| if not resp.choices[0].delta.content: continue | |
| delta = resp.choices[0].delta.content | |
| ans += delta | |
| if resp.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| tk_count = resp.usage.total_tokens | |
| if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield tk_count | |
| class OllamaChat(Base): | |
| def __init__(self, key, model_name, **kwargs): | |
| self.client = Client(host=kwargs["base_url"]) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| try: | |
| options = {} | |
| if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | |
| if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | |
| if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | |
| if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | |
| if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | |
| response = self.client.chat( | |
| model=self.model_name, | |
| messages=history, | |
| options=options, | |
| keep_alive=-1 | |
| ) | |
| ans = response["message"]["content"].strip() | |
| return ans, response["eval_count"] + response.get("prompt_eval_count", 0) | |
| except Exception as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| options = {} | |
| if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | |
| if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | |
| if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | |
| if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | |
| if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | |
| ans = "" | |
| try: | |
| response = self.client.chat( | |
| model=self.model_name, | |
| messages=history, | |
| stream=True, | |
| options=options, | |
| keep_alive=-1 | |
| ) | |
| for resp in response: | |
| if resp["done"]: | |
| yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) | |
| ans += resp["message"]["content"] | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield 0 | |
| class LocalAIChat(Base): | |
| def __init__(self, key, model_name, base_url): | |
| if not base_url: | |
| raise ValueError("Local llm url cannot be None") | |
| if base_url.split("/")[-1] != "v1": | |
| base_url = os.path.join(base_url, "v1") | |
| self.client = OpenAI(api_key="empty", base_url=base_url) | |
| self.model_name = model_name.split("___")[0] | |
| class LocalLLM(Base): | |
| class RPCProxy: | |
| def __init__(self, host, port): | |
| self.host = host | |
| self.port = int(port) | |
| self.__conn() | |
| def __conn(self): | |
| from multiprocessing.connection import Client | |
| self._connection = Client( | |
| (self.host, self.port), authkey=b"infiniflow-token4kevinhu" | |
| ) | |
| def __getattr__(self, name): | |
| import pickle | |
| def do_rpc(*args, **kwargs): | |
| for _ in range(3): | |
| try: | |
| self._connection.send(pickle.dumps((name, args, kwargs))) | |
| return pickle.loads(self._connection.recv()) | |
| except Exception as e: | |
| self.__conn() | |
| raise Exception("RPC connection lost!") | |
| return do_rpc | |
| def __init__(self, key, model_name): | |
| from jina import Client | |
| self.client = Client(port=12345, protocol="grpc", asyncio=True) | |
| def _prepare_prompt(self, system, history, gen_conf): | |
| from rag.svr.jina_server import Prompt, Generation | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | |
| return Prompt(message=history, gen_conf=gen_conf) | |
| def _stream_response(self, endpoint, prompt): | |
| from rag.svr.jina_server import Prompt, Generation | |
| answer = "" | |
| try: | |
| res = self.client.stream_doc( | |
| on=endpoint, inputs=prompt, return_type=Generation | |
| ) | |
| loop = asyncio.get_event_loop() | |
| try: | |
| while True: | |
| answer = loop.run_until_complete(res.__anext__()).text | |
| yield answer | |
| except StopAsyncIteration: | |
| pass | |
| except Exception as e: | |
| yield answer + "\n**ERROR**: " + str(e) | |
| yield num_tokens_from_string(answer) | |
| def chat(self, system, history, gen_conf): | |
| prompt = self._prepare_prompt(system, history, gen_conf) | |
| chat_gen = self._stream_response("/chat", prompt) | |
| ans = next(chat_gen) | |
| total_tokens = next(chat_gen) | |
| return ans, total_tokens | |
| def chat_streamly(self, system, history, gen_conf): | |
| prompt = self._prepare_prompt(system, history, gen_conf) | |
| return self._stream_response("/stream", prompt) | |
| class VolcEngineChat(Base): | |
| def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'): | |
| """ | |
| Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, | |
| Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use | |
| model_name is for display only | |
| """ | |
| base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3' | |
| ark_api_key = json.loads(key).get('ark_api_key', '') | |
| model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '') | |
| super().__init__(ark_api_key, model_name, base_url) | |
| class MiniMaxChat(Base): | |
| def __init__( | |
| self, | |
| key, | |
| model_name, | |
| base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", | |
| ): | |
| if not base_url: | |
| base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" | |
| self.base_url = base_url | |
| self.model_name = model_name | |
| self.api_key = key | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| headers = { | |
| "Authorization": f"Bearer {self.api_key}", | |
| "Content-Type": "application/json", | |
| } | |
| payload = json.dumps( | |
| {"model": self.model_name, "messages": history, **gen_conf} | |
| ) | |
| try: | |
| response = requests.request( | |
| "POST", url=self.base_url, headers=headers, data=payload | |
| ) | |
| response = response.json() | |
| ans = response["choices"][0]["message"]["content"].strip() | |
| if response["choices"][0]["finish_reason"] == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response["usage"]["total_tokens"] | |
| except Exception as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| headers = { | |
| "Authorization": f"Bearer {self.api_key}", | |
| "Content-Type": "application/json", | |
| } | |
| payload = json.dumps( | |
| { | |
| "model": self.model_name, | |
| "messages": history, | |
| "stream": True, | |
| **gen_conf, | |
| } | |
| ) | |
| response = requests.request( | |
| "POST", | |
| url=self.base_url, | |
| headers=headers, | |
| data=payload, | |
| ) | |
| for resp in response.text.split("\n\n")[:-1]: | |
| resp = json.loads(resp[6:]) | |
| text = "" | |
| if "choices" in resp and "delta" in resp["choices"][0]: | |
| text = resp["choices"][0]["delta"]["content"] | |
| ans += text | |
| total_tokens = ( | |
| total_tokens + num_tokens_from_string(text) | |
| if "usage" not in resp | |
| else resp["usage"]["total_tokens"] | |
| ) | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class MistralChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| from mistralai.client import MistralClient | |
| self.client = MistralClient(api_key=key) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| try: | |
| response = self.client.chat( | |
| model=self.model_name, | |
| messages=history, | |
| **gen_conf) | |
| ans = response.choices[0].message.content | |
| if response.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response.usage.total_tokens | |
| except openai.APIError as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.chat_stream( | |
| model=self.model_name, | |
| messages=history, | |
| **gen_conf) | |
| for resp in response: | |
| if not resp.choices or not resp.choices[0].delta.content: continue | |
| ans += resp.choices[0].delta.content | |
| total_tokens += 1 | |
| if resp.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| yield ans | |
| except openai.APIError as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class BedrockChat(Base): | |
| def __init__(self, key, model_name, **kwargs): | |
| import boto3 | |
| self.bedrock_ak = json.loads(key).get('bedrock_ak', '') | |
| self.bedrock_sk = json.loads(key).get('bedrock_sk', '') | |
| self.bedrock_region = json.loads(key).get('bedrock_region', '') | |
| self.model_name = model_name | |
| self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, | |
| aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) | |
| def chat(self, system, history, gen_conf): | |
| from botocore.exceptions import ClientError | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| if "max_tokens" in gen_conf: | |
| gen_conf["maxTokens"] = gen_conf["max_tokens"] | |
| _ = gen_conf.pop("max_tokens") | |
| if "top_p" in gen_conf: | |
| gen_conf["topP"] = gen_conf["top_p"] | |
| _ = gen_conf.pop("top_p") | |
| for item in history: | |
| if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): | |
| item["content"] = [{"text": item["content"]}] | |
| try: | |
| # Send the message to the model, using a basic inference configuration. | |
| response = self.client.converse( | |
| modelId=self.model_name, | |
| messages=history, | |
| inferenceConfig=gen_conf, | |
| system=[{"text": (system if system else "Answer the user's message.")}], | |
| ) | |
| # Extract and print the response text. | |
| ans = response["output"]["message"]["content"][0]["text"] | |
| return ans, num_tokens_from_string(ans) | |
| except (ClientError, Exception) as e: | |
| return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| from botocore.exceptions import ClientError | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| if "max_tokens" in gen_conf: | |
| gen_conf["maxTokens"] = gen_conf["max_tokens"] | |
| _ = gen_conf.pop("max_tokens") | |
| if "top_p" in gen_conf: | |
| gen_conf["topP"] = gen_conf["top_p"] | |
| _ = gen_conf.pop("top_p") | |
| for item in history: | |
| if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): | |
| item["content"] = [{"text": item["content"]}] | |
| if self.model_name.split('.')[0] == 'ai21': | |
| try: | |
| response = self.client.converse( | |
| modelId=self.model_name, | |
| messages=history, | |
| inferenceConfig=gen_conf, | |
| system=[{"text": (system if system else "Answer the user's message.")}] | |
| ) | |
| ans = response["output"]["message"]["content"][0]["text"] | |
| return ans, num_tokens_from_string(ans) | |
| except (ClientError, Exception) as e: | |
| return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | |
| ans = "" | |
| try: | |
| # Send the message to the model, using a basic inference configuration. | |
| streaming_response = self.client.converse_stream( | |
| modelId=self.model_name, | |
| messages=history, | |
| inferenceConfig=gen_conf, | |
| system=[{"text": (system if system else "Answer the user's message.")}] | |
| ) | |
| # Extract and print the streamed response text in real-time. | |
| for resp in streaming_response["stream"]: | |
| if "contentBlockDelta" in resp: | |
| ans += resp["contentBlockDelta"]["delta"]["text"] | |
| yield ans | |
| except (ClientError, Exception) as e: | |
| yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" | |
| yield num_tokens_from_string(ans) | |
| class GeminiChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| from google.generativeai import client, GenerativeModel | |
| client.configure(api_key=key) | |
| _client = client.get_default_generative_client() | |
| self.model_name = 'models/' + model_name | |
| self.model = GenerativeModel(model_name=self.model_name) | |
| self.model._client = _client | |
| def chat(self, system, history, gen_conf): | |
| from google.generativeai.types import content_types | |
| if system: | |
| self.model._system_instruction = content_types.to_content(system) | |
| if 'max_tokens' in gen_conf: | |
| gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_output_tokens"]: | |
| del gen_conf[k] | |
| for item in history: | |
| if 'role' in item and item['role'] == 'assistant': | |
| item['role'] = 'model' | |
| if 'role' in item and item['role'] == 'system': | |
| item['role'] = 'user' | |
| if 'content' in item: | |
| item['parts'] = item.pop('content') | |
| try: | |
| response = self.model.generate_content( | |
| history, | |
| generation_config=gen_conf) | |
| ans = response.text | |
| return ans, response.usage_metadata.total_token_count | |
| except Exception as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| from google.generativeai.types import content_types | |
| if system: | |
| self.model._system_instruction = content_types.to_content(system) | |
| if 'max_tokens' in gen_conf: | |
| gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_output_tokens"]: | |
| del gen_conf[k] | |
| for item in history: | |
| if 'role' in item and item['role'] == 'assistant': | |
| item['role'] = 'model' | |
| if 'content' in item: | |
| item['parts'] = item.pop('content') | |
| ans = "" | |
| try: | |
| response = self.model.generate_content( | |
| history, | |
| generation_config=gen_conf, stream=True) | |
| for resp in response: | |
| ans += resp.text | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield response._chunks[-1].usage_metadata.total_token_count | |
| class GroqChat: | |
| def __init__(self, key, model_name, base_url=''): | |
| self.client = Groq(api_key=key) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| ans = "" | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| **gen_conf | |
| ) | |
| ans = response.choices[0].message.content | |
| if response.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| return ans, response.usage.total_tokens | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_tokens"]: | |
| del gen_conf[k] | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.chat.completions.create( | |
| model=self.model_name, | |
| messages=history, | |
| stream=True, | |
| **gen_conf | |
| ) | |
| for resp in response: | |
| if not resp.choices or not resp.choices[0].delta.content: | |
| continue | |
| ans += resp.choices[0].delta.content | |
| total_tokens += 1 | |
| if resp.choices[0].finish_reason == "length": | |
| ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
| [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| ## openrouter | |
| class OpenRouterChat(Base): | |
| def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"): | |
| if not base_url: | |
| base_url = "https://openrouter.ai/api/v1" | |
| super().__init__(key, model_name, base_url) | |
| class StepFunChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"): | |
| if not base_url: | |
| base_url = "https://api.stepfun.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| class NvidiaChat(Base): | |
| def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"): | |
| if not base_url: | |
| base_url = "https://integrate.api.nvidia.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| class LmStudioChat(Base): | |
| def __init__(self, key, model_name, base_url): | |
| if not base_url: | |
| raise ValueError("Local llm url cannot be None") | |
| if base_url.split("/")[-1] != "v1": | |
| base_url = os.path.join(base_url, "v1") | |
| self.client = OpenAI(api_key="lm-studio", base_url=base_url) | |
| self.model_name = model_name | |
| class OpenAI_APIChat(Base): | |
| def __init__(self, key, model_name, base_url): | |
| if not base_url: | |
| raise ValueError("url cannot be None") | |
| if base_url.split("/")[-1] != "v1": | |
| base_url = os.path.join(base_url, "v1") | |
| model_name = model_name.split("___")[0] | |
| super().__init__(key, model_name, base_url) | |
| class CoHereChat(Base): | |
| def __init__(self, key, model_name, base_url=""): | |
| from cohere import Client | |
| self.client = Client(api_key=key) | |
| self.model_name = model_name | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| if "top_p" in gen_conf: | |
| gen_conf["p"] = gen_conf.pop("top_p") | |
| if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | |
| gen_conf.pop("presence_penalty") | |
| for item in history: | |
| if "role" in item and item["role"] == "user": | |
| item["role"] = "USER" | |
| if "role" in item and item["role"] == "assistant": | |
| item["role"] = "CHATBOT" | |
| if "content" in item: | |
| item["message"] = item.pop("content") | |
| mes = history.pop()["message"] | |
| ans = "" | |
| try: | |
| response = self.client.chat( | |
| model=self.model_name, chat_history=history, message=mes, **gen_conf | |
| ) | |
| ans = response.text | |
| if response.finish_reason == "MAX_TOKENS": | |
| ans += ( | |
| "...\nFor the content length reason, it stopped, continue?" | |
| if is_english([ans]) | |
| else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| ) | |
| return ( | |
| ans, | |
| response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, | |
| ) | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| history.insert(0, {"role": "system", "content": system}) | |
| if "top_p" in gen_conf: | |
| gen_conf["p"] = gen_conf.pop("top_p") | |
| if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | |
| gen_conf.pop("presence_penalty") | |
| for item in history: | |
| if "role" in item and item["role"] == "user": | |
| item["role"] = "USER" | |
| if "role" in item and item["role"] == "assistant": | |
| item["role"] = "CHATBOT" | |
| if "content" in item: | |
| item["message"] = item.pop("content") | |
| mes = history.pop()["message"] | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.chat_stream( | |
| model=self.model_name, chat_history=history, message=mes, **gen_conf | |
| ) | |
| for resp in response: | |
| if resp.event_type == "text-generation": | |
| ans += resp.text | |
| total_tokens += num_tokens_from_string(resp.text) | |
| elif resp.event_type == "stream-end": | |
| if resp.finish_reason == "MAX_TOKENS": | |
| ans += ( | |
| "...\nFor the content length reason, it stopped, continue?" | |
| if is_english([ans]) | |
| else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| ) | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class LeptonAIChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| if not base_url: | |
| base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1") | |
| super().__init__(key, model_name, base_url) | |
| class TogetherAIChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"): | |
| if not base_url: | |
| base_url = "https://api.together.xyz/v1" | |
| super().__init__(key, model_name, base_url) | |
| class PerfXCloudChat(Base): | |
| def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"): | |
| if not base_url: | |
| base_url = "https://cloud.perfxlab.cn/v1" | |
| super().__init__(key, model_name, base_url) | |
| class UpstageChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"): | |
| if not base_url: | |
| base_url = "https://api.upstage.ai/v1/solar" | |
| super().__init__(key, model_name, base_url) | |
| class NovitaAIChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"): | |
| if not base_url: | |
| base_url = "https://api.novita.ai/v3/openai" | |
| super().__init__(key, model_name, base_url) | |
| class SILICONFLOWChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"): | |
| if not base_url: | |
| base_url = "https://api.siliconflow.cn/v1" | |
| super().__init__(key, model_name, base_url) | |
| class YiChat(Base): | |
| def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"): | |
| if not base_url: | |
| base_url = "https://api.lingyiwanwu.com/v1" | |
| super().__init__(key, model_name, base_url) | |
| class ReplicateChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| from replicate.client import Client | |
| self.model_name = model_name | |
| self.client = Client(api_token=key) | |
| self.system = "" | |
| def chat(self, system, history, gen_conf): | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | |
| if system: | |
| self.system = system | |
| prompt = "\n".join( | |
| [item["role"] + ":" + item["content"] for item in history[-5:]] | |
| ) | |
| ans = "" | |
| try: | |
| response = self.client.run( | |
| self.model_name, | |
| input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, | |
| ) | |
| ans = "".join(response) | |
| return ans, num_tokens_from_string(ans) | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | |
| if system: | |
| self.system = system | |
| prompt = "\n".join( | |
| [item["role"] + ":" + item["content"] for item in history[-5:]] | |
| ) | |
| ans = "" | |
| try: | |
| response = self.client.run( | |
| self.model_name, | |
| input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, | |
| ) | |
| for resp in response: | |
| ans += resp | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield num_tokens_from_string(ans) | |
| class HunyuanChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| from tencentcloud.common import credential | |
| from tencentcloud.hunyuan.v20230901 import hunyuan_client | |
| key = json.loads(key) | |
| sid = key.get("hunyuan_sid", "") | |
| sk = key.get("hunyuan_sk", "") | |
| cred = credential.Credential(sid, sk) | |
| self.model_name = model_name | |
| self.client = hunyuan_client.HunyuanClient(cred, "") | |
| def chat(self, system, history, gen_conf): | |
| from tencentcloud.hunyuan.v20230901 import models | |
| from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( | |
| TencentCloudSDKException, | |
| ) | |
| _gen_conf = {} | |
| _history = [{k.capitalize(): v for k, v in item.items()} for item in history] | |
| if system: | |
| _history.insert(0, {"Role": "system", "Content": system}) | |
| if "temperature" in gen_conf: | |
| _gen_conf["Temperature"] = gen_conf["temperature"] | |
| if "top_p" in gen_conf: | |
| _gen_conf["TopP"] = gen_conf["top_p"] | |
| req = models.ChatCompletionsRequest() | |
| params = {"Model": self.model_name, "Messages": _history, **_gen_conf} | |
| req.from_json_string(json.dumps(params)) | |
| ans = "" | |
| try: | |
| response = self.client.ChatCompletions(req) | |
| ans = response.Choices[0].Message.Content | |
| return ans, response.Usage.TotalTokens | |
| except TencentCloudSDKException as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| from tencentcloud.hunyuan.v20230901 import models | |
| from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( | |
| TencentCloudSDKException, | |
| ) | |
| _gen_conf = {} | |
| _history = [{k.capitalize(): v for k, v in item.items()} for item in history] | |
| if system: | |
| _history.insert(0, {"Role": "system", "Content": system}) | |
| if "temperature" in gen_conf: | |
| _gen_conf["Temperature"] = gen_conf["temperature"] | |
| if "top_p" in gen_conf: | |
| _gen_conf["TopP"] = gen_conf["top_p"] | |
| req = models.ChatCompletionsRequest() | |
| params = { | |
| "Model": self.model_name, | |
| "Messages": _history, | |
| "Stream": True, | |
| **_gen_conf, | |
| } | |
| req.from_json_string(json.dumps(params)) | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.ChatCompletions(req) | |
| for resp in response: | |
| resp = json.loads(resp["data"]) | |
| if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: | |
| continue | |
| ans += resp["Choices"][0]["Delta"]["Content"] | |
| total_tokens += 1 | |
| yield ans | |
| except TencentCloudSDKException as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class SparkChat(Base): | |
| def __init__( | |
| self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1" | |
| ): | |
| if not base_url: | |
| base_url = "https://spark-api-open.xf-yun.com/v1" | |
| model2version = { | |
| "Spark-Max": "generalv3.5", | |
| "Spark-Lite": "general", | |
| "Spark-Pro": "generalv3", | |
| "Spark-Pro-128K": "pro-128k", | |
| "Spark-4.0-Ultra": "4.0Ultra", | |
| } | |
| model_version = model2version[model_name] | |
| super().__init__(key, model_version, base_url) | |
| class BaiduYiyanChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| import qianfan | |
| key = json.loads(key) | |
| ak = key.get("yiyan_ak", "") | |
| sk = key.get("yiyan_sk", "") | |
| self.client = qianfan.ChatCompletion(ak=ak, sk=sk) | |
| self.model_name = model_name.lower() | |
| self.system = "" | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| gen_conf["penalty_score"] = ( | |
| (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", | |
| 0)) / 2 | |
| ) + 1 | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | |
| ans = "" | |
| try: | |
| response = self.client.do( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| **gen_conf | |
| ).body | |
| ans = response['result'] | |
| return ans, response["usage"]["total_tokens"] | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| gen_conf["penalty_score"] = ( | |
| (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", | |
| 0)) / 2 | |
| ) + 1 | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.do( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| stream=True, | |
| **gen_conf | |
| ) | |
| for resp in response: | |
| resp = resp.body | |
| ans += resp['result'] | |
| total_tokens = resp["usage"]["total_tokens"] | |
| yield ans | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| yield total_tokens | |
| class AnthropicChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| import anthropic | |
| self.client = anthropic.Anthropic(api_key=key) | |
| self.model_name = model_name | |
| self.system = "" | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| if "max_tokens" not in gen_conf: | |
| gen_conf["max_tokens"] = 4096 | |
| try: | |
| response = self.client.messages.create( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| stream=False, | |
| **gen_conf, | |
| ).json() | |
| ans = response["content"][0]["text"] | |
| if response["stop_reason"] == "max_tokens": | |
| ans += ( | |
| "...\nFor the content length reason, it stopped, continue?" | |
| if is_english([ans]) | |
| else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| ) | |
| return ( | |
| ans, | |
| response["usage"]["input_tokens"] + response["usage"]["output_tokens"], | |
| ) | |
| except Exception as e: | |
| return ans + "\n**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| if "max_tokens" not in gen_conf: | |
| gen_conf["max_tokens"] = 4096 | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.messages.create( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| stream=True, | |
| **gen_conf, | |
| ) | |
| for res in response.iter_lines(): | |
| res = res.decode("utf-8") | |
| if "content_block_delta" in res and "data" in res: | |
| text = json.loads(res[6:])["delta"]["text"] | |
| ans += text | |
| total_tokens += num_tokens_from_string(text) | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| class GoogleChat(Base): | |
| def __init__(self, key, model_name, base_url=None): | |
| from google.oauth2 import service_account | |
| import base64 | |
| key = json.load(key) | |
| access_token = json.loads( | |
| base64.b64decode(key.get("google_service_account_key", "")) | |
| ) | |
| project_id = key.get("google_project_id", "") | |
| region = key.get("google_region", "") | |
| scopes = ["https://www.googleapis.com/auth/cloud-platform"] | |
| self.model_name = model_name | |
| self.system = "" | |
| if "claude" in self.model_name: | |
| from anthropic import AnthropicVertex | |
| from google.auth.transport.requests import Request | |
| if access_token: | |
| credits = service_account.Credentials.from_service_account_info( | |
| access_token, scopes=scopes | |
| ) | |
| request = Request() | |
| credits.refresh(request) | |
| token = credits.token | |
| self.client = AnthropicVertex( | |
| region=region, project_id=project_id, access_token=token | |
| ) | |
| else: | |
| self.client = AnthropicVertex(region=region, project_id=project_id) | |
| else: | |
| from google.cloud import aiplatform | |
| import vertexai.generative_models as glm | |
| if access_token: | |
| credits = service_account.Credentials.from_service_account_info( | |
| access_token | |
| ) | |
| aiplatform.init( | |
| credentials=credits, project=project_id, location=region | |
| ) | |
| else: | |
| aiplatform.init(project=project_id, location=region) | |
| self.client = glm.GenerativeModel(model_name=self.model_name) | |
| def chat(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| if "claude" in self.model_name: | |
| if "max_tokens" not in gen_conf: | |
| gen_conf["max_tokens"] = 4096 | |
| try: | |
| response = self.client.messages.create( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| stream=False, | |
| **gen_conf, | |
| ).json() | |
| ans = response["content"][0]["text"] | |
| if response["stop_reason"] == "max_tokens": | |
| ans += ( | |
| "...\nFor the content length reason, it stopped, continue?" | |
| if is_english([ans]) | |
| else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
| ) | |
| return ( | |
| ans, | |
| response["usage"]["input_tokens"] | |
| + response["usage"]["output_tokens"], | |
| ) | |
| except Exception as e: | |
| return "\n**ERROR**: " + str(e), 0 | |
| else: | |
| self.client._system_instruction = self.system | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_output_tokens"]: | |
| del gen_conf[k] | |
| for item in history: | |
| if "role" in item and item["role"] == "assistant": | |
| item["role"] = "model" | |
| if "content" in item: | |
| item["parts"] = item.pop("content") | |
| try: | |
| response = self.client.generate_content( | |
| history, generation_config=gen_conf | |
| ) | |
| ans = response.text | |
| return ans, response.usage_metadata.total_token_count | |
| except Exception as e: | |
| return "**ERROR**: " + str(e), 0 | |
| def chat_streamly(self, system, history, gen_conf): | |
| if system: | |
| self.system = system | |
| if "claude" in self.model_name: | |
| if "max_tokens" not in gen_conf: | |
| gen_conf["max_tokens"] = 4096 | |
| ans = "" | |
| total_tokens = 0 | |
| try: | |
| response = self.client.messages.create( | |
| model=self.model_name, | |
| messages=history, | |
| system=self.system, | |
| stream=True, | |
| **gen_conf, | |
| ) | |
| for res in response.iter_lines(): | |
| res = res.decode("utf-8") | |
| if "content_block_delta" in res and "data" in res: | |
| text = json.loads(res[6:])["delta"]["text"] | |
| ans += text | |
| total_tokens += num_tokens_from_string(text) | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield total_tokens | |
| else: | |
| self.client._system_instruction = self.system | |
| if "max_tokens" in gen_conf: | |
| gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | |
| for k in list(gen_conf.keys()): | |
| if k not in ["temperature", "top_p", "max_output_tokens"]: | |
| del gen_conf[k] | |
| for item in history: | |
| if "role" in item and item["role"] == "assistant": | |
| item["role"] = "model" | |
| if "content" in item: | |
| item["parts"] = item.pop("content") | |
| ans = "" | |
| try: | |
| response = self.model.generate_content( | |
| history, generation_config=gen_conf, stream=True | |
| ) | |
| for resp in response: | |
| ans += resp.text | |
| yield ans | |
| except Exception as e: | |
| yield ans + "\n**ERROR**: " + str(e) | |
| yield response._chunks[-1].usage_metadata.total_token_count | |