|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import re | 
					
						
						|  | import traceback | 
					
						
						|  | from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait | 
					
						
						|  | from threading import Lock | 
					
						
						|  | from typing import Tuple | 
					
						
						|  | import umap | 
					
						
						|  | import numpy as np | 
					
						
						|  | from sklearn.mixture import GaussianMixture | 
					
						
						|  |  | 
					
						
						|  | from rag.utils import num_tokens_from_string, truncate | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: | 
					
						
						|  | def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1): | 
					
						
						|  | self._max_cluster = max_cluster | 
					
						
						|  | self._llm_model = llm_model | 
					
						
						|  | self._embd_model = embd_model | 
					
						
						|  | self._threshold = threshold | 
					
						
						|  | self._prompt = prompt | 
					
						
						|  | self._max_token = max_token | 
					
						
						|  |  | 
					
						
						|  | def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int): | 
					
						
						|  | max_clusters = min(self._max_cluster, len(embeddings)) | 
					
						
						|  | n_clusters = np.arange(1, max_clusters) | 
					
						
						|  | bics = [] | 
					
						
						|  | for n in n_clusters: | 
					
						
						|  | gm = GaussianMixture(n_components=n, random_state=random_state) | 
					
						
						|  | gm.fit(embeddings) | 
					
						
						|  | bics.append(gm.bic(embeddings)) | 
					
						
						|  | optimal_clusters = n_clusters[np.argmin(bics)] | 
					
						
						|  | return optimal_clusters | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None): | 
					
						
						|  | layers = [(0, len(chunks))] | 
					
						
						|  | start, end = 0, len(chunks) | 
					
						
						|  | if len(chunks) <= 1: return | 
					
						
						|  |  | 
					
						
						|  | def summarize(ck_idx, lock): | 
					
						
						|  | nonlocal chunks | 
					
						
						|  | try: | 
					
						
						|  | texts = [chunks[i][0] for i in ck_idx] | 
					
						
						|  | len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts)) | 
					
						
						|  | cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) | 
					
						
						|  | cnt = self._llm_model.chat("You're a helpful assistant.", | 
					
						
						|  | [{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}], | 
					
						
						|  | {"temperature": 0.3, "max_tokens": self._max_token} | 
					
						
						|  | ) | 
					
						
						|  | cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "", cnt) | 
					
						
						|  | print("SUM:", cnt) | 
					
						
						|  | embds, _ = self._embd_model.encode([cnt]) | 
					
						
						|  | with lock: | 
					
						
						|  | chunks.append((cnt, embds[0])) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(e, flush=True) | 
					
						
						|  | traceback.print_stack(e) | 
					
						
						|  | return e | 
					
						
						|  |  | 
					
						
						|  | labels = [] | 
					
						
						|  | while end - start > 1: | 
					
						
						|  | embeddings = [embd for _, embd in chunks[start: end]] | 
					
						
						|  | if len(embeddings) == 2: | 
					
						
						|  | summarize([start, start+1], Lock()) | 
					
						
						|  | if callback: | 
					
						
						|  | callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | 
					
						
						|  | labels.extend([0,0]) | 
					
						
						|  | layers.append((end, len(chunks))) | 
					
						
						|  | start = end | 
					
						
						|  | end = len(chunks) | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | n_neighbors = int((len(embeddings) - 1) ** 0.8) | 
					
						
						|  | reduced_embeddings = umap.UMAP( | 
					
						
						|  | n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine" | 
					
						
						|  | ).fit_transform(embeddings) | 
					
						
						|  | n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) | 
					
						
						|  | if n_clusters == 1: | 
					
						
						|  | lbls = [0 for _ in range(len(reduced_embeddings))] | 
					
						
						|  | else: | 
					
						
						|  | gm = GaussianMixture(n_components=n_clusters, random_state=random_state) | 
					
						
						|  | gm.fit(reduced_embeddings) | 
					
						
						|  | probs = gm.predict_proba(reduced_embeddings) | 
					
						
						|  | lbls = [np.where(prob > self._threshold)[0] for prob in probs] | 
					
						
						|  | lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] | 
					
						
						|  | lock = Lock() | 
					
						
						|  | with ThreadPoolExecutor(max_workers=12) as executor: | 
					
						
						|  | threads = [] | 
					
						
						|  | for c in range(n_clusters): | 
					
						
						|  | ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c] | 
					
						
						|  | threads.append(executor.submit(summarize, ck_idx, lock)) | 
					
						
						|  | wait(threads, return_when=ALL_COMPLETED) | 
					
						
						|  | print([t.result() for t in threads]) | 
					
						
						|  |  | 
					
						
						|  | assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) | 
					
						
						|  | labels.extend(lbls) | 
					
						
						|  | layers.append((end, len(chunks))) | 
					
						
						|  | if callback: | 
					
						
						|  | callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | 
					
						
						|  | start = end | 
					
						
						|  | end = len(chunks) | 
					
						
						|  |  | 
					
						
						|  |  |