add support for LocalLLM (#1744)
Browse files### What problem does this PR solve?
add support for LocalLLM
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: Zhedong Cen <[email protected]>
- rag/llm/chat_model.py +36 -23
- rag/svr/jina_server.py +93 -0
rag/llm/chat_model.py
CHANGED
|
@@ -27,6 +27,8 @@ from groq import Groq
|
|
| 27 |
import os
|
| 28 |
import json
|
| 29 |
import requests
|
|
|
|
|
|
|
| 30 |
|
| 31 |
class Base(ABC):
|
| 32 |
def __init__(self, key, model_name, base_url):
|
|
@@ -381,8 +383,10 @@ class LocalLLM(Base):
|
|
| 381 |
|
| 382 |
def __conn(self):
|
| 383 |
from multiprocessing.connection import Client
|
|
|
|
| 384 |
self._connection = Client(
|
| 385 |
-
(self.host, self.port), authkey=b
|
|
|
|
| 386 |
|
| 387 |
def __getattr__(self, name):
|
| 388 |
import pickle
|
|
@@ -390,8 +394,7 @@ class LocalLLM(Base):
|
|
| 390 |
def do_rpc(*args, **kwargs):
|
| 391 |
for _ in range(3):
|
| 392 |
try:
|
| 393 |
-
self._connection.send(
|
| 394 |
-
pickle.dumps((name, args, kwargs)))
|
| 395 |
return pickle.loads(self._connection.recv())
|
| 396 |
except Exception as e:
|
| 397 |
self.__conn()
|
|
@@ -399,35 +402,45 @@ class LocalLLM(Base):
|
|
| 399 |
|
| 400 |
return do_rpc
|
| 401 |
|
| 402 |
-
def __init__(self, key, model_name
|
| 403 |
-
|
| 404 |
|
| 405 |
-
|
| 406 |
-
if system:
|
| 407 |
-
history.insert(0, {"role": "system", "content": system})
|
| 408 |
-
try:
|
| 409 |
-
ans = self.client.chat(
|
| 410 |
-
history,
|
| 411 |
-
gen_conf
|
| 412 |
-
)
|
| 413 |
-
return ans, num_tokens_from_string(ans)
|
| 414 |
-
except Exception as e:
|
| 415 |
-
return "**ERROR**: " + str(e), 0
|
| 416 |
|
| 417 |
-
def
|
| 418 |
if system:
|
| 419 |
history.insert(0, {"role": "system", "content": system})
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
answer = ""
|
| 422 |
try:
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
except Exception as e:
|
| 428 |
yield answer + "\n**ERROR**: " + str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
-
|
|
|
|
|
|
|
| 431 |
|
| 432 |
|
| 433 |
class VolcEngineChat(Base):
|
|
|
|
| 27 |
import os
|
| 28 |
import json
|
| 29 |
import requests
|
| 30 |
+
import asyncio
|
| 31 |
+
from rag.svr.jina_server import Prompt,Generation
|
| 32 |
|
| 33 |
class Base(ABC):
|
| 34 |
def __init__(self, key, model_name, base_url):
|
|
|
|
| 383 |
|
| 384 |
def __conn(self):
|
| 385 |
from multiprocessing.connection import Client
|
| 386 |
+
|
| 387 |
self._connection = Client(
|
| 388 |
+
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
|
| 389 |
+
)
|
| 390 |
|
| 391 |
def __getattr__(self, name):
|
| 392 |
import pickle
|
|
|
|
| 394 |
def do_rpc(*args, **kwargs):
|
| 395 |
for _ in range(3):
|
| 396 |
try:
|
| 397 |
+
self._connection.send(pickle.dumps((name, args, kwargs)))
|
|
|
|
| 398 |
return pickle.loads(self._connection.recv())
|
| 399 |
except Exception as e:
|
| 400 |
self.__conn()
|
|
|
|
| 402 |
|
| 403 |
return do_rpc
|
| 404 |
|
| 405 |
+
def __init__(self, key, model_name):
|
| 406 |
+
from jina import Client
|
| 407 |
|
| 408 |
+
self.client = Client(port=12345, protocol="grpc", asyncio=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
+
def _prepare_prompt(self, system, history, gen_conf):
|
| 411 |
if system:
|
| 412 |
history.insert(0, {"role": "system", "content": system})
|
| 413 |
+
if "max_tokens" in gen_conf:
|
| 414 |
+
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
|
| 415 |
+
return Prompt(message=history, gen_conf=gen_conf)
|
| 416 |
+
|
| 417 |
+
def _stream_response(self, endpoint, prompt):
|
| 418 |
answer = ""
|
| 419 |
try:
|
| 420 |
+
res = self.client.stream_doc(
|
| 421 |
+
on=endpoint, inputs=prompt, return_type=Generation
|
| 422 |
+
)
|
| 423 |
+
loop = asyncio.get_event_loop()
|
| 424 |
+
try:
|
| 425 |
+
while True:
|
| 426 |
+
answer = loop.run_until_complete(res.__anext__()).text
|
| 427 |
+
yield answer
|
| 428 |
+
except StopAsyncIteration:
|
| 429 |
+
pass
|
| 430 |
except Exception as e:
|
| 431 |
yield answer + "\n**ERROR**: " + str(e)
|
| 432 |
+
yield num_tokens_from_string(answer)
|
| 433 |
+
|
| 434 |
+
def chat(self, system, history, gen_conf):
|
| 435 |
+
prompt = self._prepare_prompt(system, history, gen_conf)
|
| 436 |
+
chat_gen = self._stream_response("/chat", prompt)
|
| 437 |
+
ans = next(chat_gen)
|
| 438 |
+
total_tokens = next(chat_gen)
|
| 439 |
+
return ans, total_tokens
|
| 440 |
|
| 441 |
+
def chat_streamly(self, system, history, gen_conf):
|
| 442 |
+
prompt = self._prepare_prompt(system, history, gen_conf)
|
| 443 |
+
return self._stream_response("/stream", prompt)
|
| 444 |
|
| 445 |
|
| 446 |
class VolcEngineChat(Base):
|
rag/svr/jina_server.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from jina import Deployment
|
| 2 |
+
from docarray import BaseDoc
|
| 3 |
+
from jina import Executor, requests
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 5 |
+
import argparse
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Prompt(BaseDoc):
|
| 10 |
+
message: list[dict]
|
| 11 |
+
gen_conf: dict
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Generation(BaseDoc):
|
| 15 |
+
text: str
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
tokenizer = None
|
| 19 |
+
model_name = ""
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TokenStreamingExecutor(Executor):
|
| 23 |
+
def __init__(self, **kwargs):
|
| 24 |
+
super().__init__(**kwargs)
|
| 25 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
model_name, device_map="auto", torch_dtype="auto"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
@requests(on="/chat")
|
| 30 |
+
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
| 31 |
+
text = tokenizer.apply_chat_template(
|
| 32 |
+
doc.message,
|
| 33 |
+
tokenize=False,
|
| 34 |
+
)
|
| 35 |
+
inputs = tokenizer([text], return_tensors="pt")
|
| 36 |
+
generation_config = GenerationConfig(
|
| 37 |
+
**doc.gen_conf,
|
| 38 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 39 |
+
pad_token_id=tokenizer.eos_token_id
|
| 40 |
+
)
|
| 41 |
+
generated_ids = self.model.generate(
|
| 42 |
+
inputs.input_ids, generation_config=generation_config
|
| 43 |
+
)
|
| 44 |
+
generated_ids = [
|
| 45 |
+
output_ids[len(input_ids) :]
|
| 46 |
+
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 50 |
+
yield Generation(text=response)
|
| 51 |
+
|
| 52 |
+
@requests(on="/stream")
|
| 53 |
+
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
| 54 |
+
text = tokenizer.apply_chat_template(
|
| 55 |
+
doc.message,
|
| 56 |
+
tokenize=False,
|
| 57 |
+
)
|
| 58 |
+
input = tokenizer([text], return_tensors="pt")
|
| 59 |
+
input_len = input["input_ids"].shape[1]
|
| 60 |
+
max_new_tokens = 512
|
| 61 |
+
if "max_new_tokens" in doc.gen_conf:
|
| 62 |
+
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
| 63 |
+
generation_config = GenerationConfig(
|
| 64 |
+
**doc.gen_conf,
|
| 65 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 66 |
+
pad_token_id=tokenizer.eos_token_id
|
| 67 |
+
)
|
| 68 |
+
for _ in range(max_new_tokens):
|
| 69 |
+
output = self.model.generate(
|
| 70 |
+
**input, max_new_tokens=1, generation_config=generation_config
|
| 71 |
+
)
|
| 72 |
+
if output[0][-1] == tokenizer.eos_token_id:
|
| 73 |
+
break
|
| 74 |
+
yield Generation(
|
| 75 |
+
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
| 76 |
+
)
|
| 77 |
+
input = {
|
| 78 |
+
"input_ids": output,
|
| 79 |
+
"attention_mask": torch.ones(1, len(output[0])),
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
parser = argparse.ArgumentParser()
|
| 85 |
+
parser.add_argument("--model_name", type=str, help="Model name or path")
|
| 86 |
+
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
| 87 |
+
args = parser.parse_args()
|
| 88 |
+
model_name = args.model_name
|
| 89 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
| 90 |
+
with Deployment(
|
| 91 |
+
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
| 92 |
+
) as dep:
|
| 93 |
+
dep.block()
|