Spaces:
Runtime error
Runtime error
Upload models
Browse files- .gitattributes +2 -0
- README.md +1 -1
- app.py +1 -1
- examples/explore_faiss.md +8 -0
- examples/explore_faiss.py +163 -0
- frequency_blink.txt +3 -0
- models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/config.yaml +8 -0
- models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/documents.json +3 -0
- models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/embeddings.pt +3 -0
- relik/inference/annotator.py +9 -3
- relik/retriever/__init__.py +1 -0
- relik/retriever/indexers/base.py +15 -0
- relik/retriever/indexers/faiss.py +30 -7
- relik/retriever/indexers/inmemory.py +12 -0
- requirements.txt +1 -1
- scripts/blink_freq.py +19 -0
- scripts/filter_docs.py +54 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index/documents.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index/documents.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/documents.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
frequency_blink.txt filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Relik
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: streamlit
|
|
|
|
| 1 |
---
|
| 2 |
title: Relik
|
| 3 |
+
emoji: 🤖
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: streamlit
|
app.py
CHANGED
|
@@ -181,7 +181,7 @@ def run_client():
|
|
| 181 |
|
| 182 |
relik = Relik(
|
| 183 |
question_encoder="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
|
| 184 |
-
document_index="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/
|
| 185 |
reader="/home/user/app/models/relik-reader-aida-deberta-small",
|
| 186 |
top_k=100,
|
| 187 |
window_size=32,
|
|
|
|
| 181 |
|
| 182 |
relik = Relik(
|
| 183 |
question_encoder="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
|
| 184 |
+
document_index="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered",
|
| 185 |
reader="/home/user/app/models/relik-reader-aida-deberta-small",
|
| 186 |
top_k=100,
|
| 187 |
window_size=32,
|
examples/explore_faiss.md
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# table to store results
|
| 2 |
+
|
| 3 |
+
| Index | nprobe | Recall | Time |
|
| 4 |
+
|----------------|--------|--------|-------|
|
| 5 |
+
| Flat | 1 | 98.7 | 38.64 |
|
| 6 |
+
| IVFx,Flat | 1 | 42.5 | 23.46 |
|
| 7 |
+
| IVFx,Flat | 14 | 88.5 | 133 |
|
| 8 |
+
| IVFx_HNSW,Flat | 1 | 88.5 | 133 |
|
examples/explore_faiss.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import time
|
| 7 |
+
from typing import Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import tqdm
|
| 11 |
+
|
| 12 |
+
from relik.retriever import GoldenRetriever
|
| 13 |
+
from relik.common.log import get_logger
|
| 14 |
+
from relik.retriever.common.model_inputs import ModelInputs
|
| 15 |
+
from relik.retriever.data.base.datasets import BaseDataset
|
| 16 |
+
from relik.retriever.indexers.base import BaseDocumentIndex
|
| 17 |
+
from relik.retriever.indexers.faiss import FaissDocumentIndex
|
| 18 |
+
|
| 19 |
+
logger = get_logger(level=logging.INFO)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def compute_retriever_stats(dataset) -> None:
|
| 23 |
+
correct, total = 0, 0
|
| 24 |
+
for sample in dataset:
|
| 25 |
+
window_candidates = sample["window_candidates"]
|
| 26 |
+
window_candidates = [c.replace("_", " ").lower() for c in window_candidates]
|
| 27 |
+
|
| 28 |
+
for ss, se, label in sample["window_labels"]:
|
| 29 |
+
if label == "--NME--":
|
| 30 |
+
continue
|
| 31 |
+
if label.replace("_", " ").lower() in window_candidates:
|
| 32 |
+
correct += 1
|
| 33 |
+
total += 1
|
| 34 |
+
|
| 35 |
+
recall = correct / total
|
| 36 |
+
print("Recall:", recall)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@torch.no_grad()
|
| 40 |
+
def add_candidates(
|
| 41 |
+
retriever_name_or_path: Union[str, os.PathLike],
|
| 42 |
+
document_index_name_or_path: Union[str, os.PathLike],
|
| 43 |
+
input_path: Union[str, os.PathLike],
|
| 44 |
+
batch_size: int = 128,
|
| 45 |
+
num_workers: int = 4,
|
| 46 |
+
index_type: str = "Flat",
|
| 47 |
+
nprobe: int = 1,
|
| 48 |
+
device: str = "cpu",
|
| 49 |
+
precision: str = "fp32",
|
| 50 |
+
topics: bool = False,
|
| 51 |
+
):
|
| 52 |
+
document_index = BaseDocumentIndex.from_pretrained(
|
| 53 |
+
document_index_name_or_path,
|
| 54 |
+
# config_kwargs={
|
| 55 |
+
# "_target_": "relik.retriever.indexers.faiss.FaissDocumentIndex",
|
| 56 |
+
# "index_type": index_type,
|
| 57 |
+
# "nprobe": nprobe,
|
| 58 |
+
# },
|
| 59 |
+
device=device,
|
| 60 |
+
precision=precision,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
retriever = GoldenRetriever(
|
| 64 |
+
question_encoder=retriever_name_or_path,
|
| 65 |
+
document_index=document_index,
|
| 66 |
+
device=device,
|
| 67 |
+
precision=precision,
|
| 68 |
+
index_device=device,
|
| 69 |
+
index_precision=precision,
|
| 70 |
+
)
|
| 71 |
+
retriever.eval()
|
| 72 |
+
|
| 73 |
+
logger.info(f"Loading from {input_path}")
|
| 74 |
+
with open(input_path) as f:
|
| 75 |
+
samples = [json.loads(line) for line in f.readlines()]
|
| 76 |
+
|
| 77 |
+
topics = topics and "doc_topic" in samples[0]
|
| 78 |
+
|
| 79 |
+
# get tokenizer
|
| 80 |
+
tokenizer = retriever.question_tokenizer
|
| 81 |
+
collate_fn = lambda batch: ModelInputs(
|
| 82 |
+
tokenizer(
|
| 83 |
+
[b["text"] for b in batch],
|
| 84 |
+
text_pair=[b["doc_topic"] for b in batch] if topics else None,
|
| 85 |
+
padding=True,
|
| 86 |
+
return_tensors="pt",
|
| 87 |
+
truncation=True,
|
| 88 |
+
)
|
| 89 |
+
)
|
| 90 |
+
logger.info(f"Creating dataloader with batch size {batch_size}")
|
| 91 |
+
dataloader = torch.utils.data.DataLoader(
|
| 92 |
+
BaseDataset(name="passage", data=samples),
|
| 93 |
+
batch_size=batch_size,
|
| 94 |
+
shuffle=False,
|
| 95 |
+
num_workers=num_workers,
|
| 96 |
+
pin_memory=False,
|
| 97 |
+
collate_fn=collate_fn,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# we also dump the candidates to a file after a while
|
| 101 |
+
retrieved_accumulator = []
|
| 102 |
+
with torch.inference_mode():
|
| 103 |
+
start = time.time()
|
| 104 |
+
num_completed_docs = 0
|
| 105 |
+
|
| 106 |
+
for documents_batch in tqdm.tqdm(dataloader):
|
| 107 |
+
retrieve_kwargs = {
|
| 108 |
+
**documents_batch,
|
| 109 |
+
"k": 100,
|
| 110 |
+
"precision": precision,
|
| 111 |
+
}
|
| 112 |
+
batch_out = retriever.retrieve(**retrieve_kwargs)
|
| 113 |
+
retrieved_accumulator.extend(batch_out)
|
| 114 |
+
|
| 115 |
+
end = time.time()
|
| 116 |
+
|
| 117 |
+
output_data = []
|
| 118 |
+
# get the correct document from the original dataset
|
| 119 |
+
# the dataloader is not shuffled, so we can just count the number of
|
| 120 |
+
# documents we have seen so far
|
| 121 |
+
for sample, retrieved in zip(
|
| 122 |
+
samples[
|
| 123 |
+
num_completed_docs : num_completed_docs + len(retrieved_accumulator)
|
| 124 |
+
],
|
| 125 |
+
retrieved_accumulator,
|
| 126 |
+
):
|
| 127 |
+
candidate_titles = [c.label.split(" <def>", 1)[0] for c in retrieved]
|
| 128 |
+
sample["window_candidates"] = candidate_titles
|
| 129 |
+
sample["window_candidates_scores"] = [c.score for c in retrieved]
|
| 130 |
+
output_data.append(sample)
|
| 131 |
+
|
| 132 |
+
# for sample in output_data:
|
| 133 |
+
# f_out.write(json.dumps(sample) + "\n")
|
| 134 |
+
|
| 135 |
+
num_completed_docs += len(retrieved_accumulator)
|
| 136 |
+
retrieved_accumulator = []
|
| 137 |
+
|
| 138 |
+
compute_retriever_stats(output_data)
|
| 139 |
+
print(f"Retrieval took {end - start:.2f} seconds")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
if __name__ == "__main__":
|
| 143 |
+
# arg_parser = argparse.ArgumentParser()
|
| 144 |
+
# arg_parser.add_argument("--retriever_name_or_path", type=str, required=True)
|
| 145 |
+
# arg_parser.add_argument("--document_index_name_or_path", type=str, required=True)
|
| 146 |
+
# arg_parser.add_argument("--input_path", type=str, required=True)
|
| 147 |
+
# arg_parser.add_argument("--output_path", type=str, required=True)
|
| 148 |
+
# arg_parser.add_argument("--batch_size", type=int, default=128)
|
| 149 |
+
# arg_parser.add_argument("--device", type=str, default="cuda")
|
| 150 |
+
# arg_parser.add_argument("--index_device", type=str, default="cpu")
|
| 151 |
+
# arg_parser.add_argument("--precision", type=str, default="fp32")
|
| 152 |
+
|
| 153 |
+
# add_candidates(**vars(arg_parser.parse_args()))
|
| 154 |
+
add_candidates(
|
| 155 |
+
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
|
| 156 |
+
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered",
|
| 157 |
+
"/root/relik-spaces/data/reader/aida/testa_windowed.jsonl",
|
| 158 |
+
# index_type="HNSW32",
|
| 159 |
+
# index_type="IVF1024,PQ8",
|
| 160 |
+
# nprobe=1,
|
| 161 |
+
topics=True,
|
| 162 |
+
device="cuda",
|
| 163 |
+
)
|
frequency_blink.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63bdea194b5c27d8c35547a205c42b4bc2e8933a47f179bc63256cf12a3bd448
|
| 3 |
+
size 95579105
|
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/config.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: relik.retriever.indexers.inmemory.InMemoryDocumentIndex
|
| 2 |
+
documents:
|
| 3 |
+
_target_: relik.retriever.data.labels.Labels
|
| 4 |
+
embeddings:
|
| 5 |
+
_target_: torch.Tensor
|
| 6 |
+
name_or_dir: null
|
| 7 |
+
device: cpu
|
| 8 |
+
precision: null
|
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/documents.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:486ef055dcc484ddd9d445cfc2bac1e2a7c133d79492610de49b72630bd6ce8f
|
| 3 |
+
size 719452975
|
models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered/embeddings.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee144610bf744e96091f4f295d350806173703d0960a964444a1c13b248a5c0d
|
| 3 |
+
size 1537987243
|
relik/inference/annotator.py
CHANGED
|
@@ -4,6 +4,7 @@ from typing import Any, Callable, Dict, Optional, Union
|
|
| 4 |
|
| 5 |
import hydra
|
| 6 |
from omegaconf import OmegaConf
|
|
|
|
| 7 |
from relik.retriever.pytorch_modules.hf import GoldenRetrieverModel
|
| 8 |
from rich.pretty import pprint
|
| 9 |
|
|
@@ -395,10 +396,15 @@ class Relik:
|
|
| 395 |
def main():
|
| 396 |
from pprint import pprint
|
| 397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
relik = Relik(
|
| 399 |
-
question_encoder="
|
| 400 |
-
document_index=
|
| 401 |
-
reader="
|
| 402 |
device="cuda",
|
| 403 |
precision=16,
|
| 404 |
top_k=100,
|
|
|
|
| 4 |
|
| 5 |
import hydra
|
| 6 |
from omegaconf import OmegaConf
|
| 7 |
+
from relik.retriever.indexers.faiss import FaissDocumentIndex
|
| 8 |
from relik.retriever.pytorch_modules.hf import GoldenRetrieverModel
|
| 9 |
from rich.pretty import pprint
|
| 10 |
|
|
|
|
| 396 |
def main():
|
| 397 |
from pprint import pprint
|
| 398 |
|
| 399 |
+
document_index = FaissDocumentIndex.from_pretrained(
|
| 400 |
+
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index",
|
| 401 |
+
config_kwargs={"_target_": "relik.retriever.indexers.faiss.FaissDocumentIndex", "index_type": "IVFx,Flat"},
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
relik = Relik(
|
| 405 |
+
question_encoder="/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
|
| 406 |
+
document_index=document_index,
|
| 407 |
+
reader="/root/relik-spaces/models/relik-reader-aida-deberta-small",
|
| 408 |
device="cuda",
|
| 409 |
precision=16,
|
| 410 |
top_k=100,
|
relik/retriever/__init__.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from relik.retriever.pytorch_modules.model import GoldenRetriever
|
relik/retriever/indexers/base.py
CHANGED
|
@@ -79,6 +79,17 @@ class BaseDocumentIndex:
|
|
| 79 |
self.embeddings = embeddings
|
| 80 |
self.name_or_dir = name_or_dir
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
@property
|
| 83 |
def config(self) -> Dict[str, Any]:
|
| 84 |
"""
|
|
@@ -261,6 +272,7 @@ class BaseDocumentIndex:
|
|
| 261 |
config_file_name: Optional[str] = None,
|
| 262 |
document_file_name: Optional[str] = None,
|
| 263 |
embedding_file_name: Optional[str] = None,
|
|
|
|
| 264 |
*args,
|
| 265 |
**kwargs,
|
| 266 |
) -> "BaseDocumentIndex":
|
|
@@ -285,6 +297,9 @@ class BaseDocumentIndex:
|
|
| 285 |
)
|
| 286 |
|
| 287 |
config = OmegaConf.load(config_path)
|
|
|
|
|
|
|
|
|
|
| 288 |
pprint(OmegaConf.to_container(config), console=console_logger, expand_all=True)
|
| 289 |
|
| 290 |
# load the documents
|
|
|
|
| 79 |
self.embeddings = embeddings
|
| 80 |
self.name_or_dir = name_or_dir
|
| 81 |
|
| 82 |
+
def __iter__(self):
|
| 83 |
+
# make this class iterable
|
| 84 |
+
for i in range(len(self)):
|
| 85 |
+
yield self[i]
|
| 86 |
+
|
| 87 |
+
def __len__(self):
|
| 88 |
+
return self.documents.get_label_size()
|
| 89 |
+
|
| 90 |
+
def __getitem__(self, index):
|
| 91 |
+
return self.get_passage_from_index(index)
|
| 92 |
+
|
| 93 |
@property
|
| 94 |
def config(self) -> Dict[str, Any]:
|
| 95 |
"""
|
|
|
|
| 272 |
config_file_name: Optional[str] = None,
|
| 273 |
document_file_name: Optional[str] = None,
|
| 274 |
embedding_file_name: Optional[str] = None,
|
| 275 |
+
config_kwargs: Optional[Dict[str, Any]] = None,
|
| 276 |
*args,
|
| 277 |
**kwargs,
|
| 278 |
) -> "BaseDocumentIndex":
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
config = OmegaConf.load(config_path)
|
| 300 |
+
# override the config with the kwargs
|
| 301 |
+
if config_kwargs is not None:
|
| 302 |
+
config = OmegaConf.merge(config, OmegaConf.create(config_kwargs))
|
| 303 |
pprint(OmegaConf.to_container(config), console=console_logger, expand_all=True)
|
| 304 |
|
| 305 |
# load the documents
|
relik/retriever/indexers/faiss.py
CHANGED
|
@@ -6,8 +6,9 @@ from dataclasses import dataclass
|
|
| 6 |
from typing import Callable, List, Optional, Union
|
| 7 |
|
| 8 |
import numpy
|
|
|
|
| 9 |
import torch
|
| 10 |
-
from pytorch_modules import RetrievedSample
|
| 11 |
from torch.utils.data import DataLoader
|
| 12 |
from tqdm import tqdm
|
| 13 |
|
|
@@ -44,6 +45,7 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 44 |
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]] = None,
|
| 45 |
index=None,
|
| 46 |
index_type: str = "Flat",
|
|
|
|
| 47 |
metric: int = faiss.METRIC_INNER_PRODUCT,
|
| 48 |
normalize: bool = False,
|
| 49 |
device: str = "cpu",
|
|
@@ -60,6 +62,8 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 60 |
"The number of documents and embeddings must be the same."
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
| 63 |
# device to store the embeddings
|
| 64 |
self.device = device
|
| 65 |
|
|
@@ -83,6 +87,7 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 83 |
self.embeddings = self._build_faiss_index(
|
| 84 |
embeddings=embeddings,
|
| 85 |
index_type=index_type,
|
|
|
|
| 86 |
normalize=normalize,
|
| 87 |
metric=metric,
|
| 88 |
)
|
|
@@ -91,6 +96,7 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 91 |
self,
|
| 92 |
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]],
|
| 93 |
index_type: str,
|
|
|
|
| 94 |
normalize: bool,
|
| 95 |
metric: int,
|
| 96 |
):
|
|
@@ -103,11 +109,15 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 103 |
if self.normalize:
|
| 104 |
index_type = f"L2norm,{index_type}"
|
| 105 |
faiss_vector_size = embeddings.shape[1]
|
| 106 |
-
if self.device == "cpu":
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
self.embeddings = faiss.index_factory(faiss_vector_size, index_type, metric)
|
| 112 |
|
| 113 |
# convert to GPU
|
|
@@ -121,12 +131,24 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 121 |
embeddings.cpu() if isinstance(embeddings, torch.Tensor) else embeddings
|
| 122 |
)
|
| 123 |
|
|
|
|
| 124 |
# convert to float32 if embeddings is a torch.Tensor and is float16
|
| 125 |
if isinstance(embeddings, torch.Tensor) and embeddings.dtype == torch.float16:
|
| 126 |
embeddings = embeddings.float()
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
self.embeddings.add(embeddings)
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# save parameters for saving/loading
|
| 131 |
self.index_type = index_type
|
| 132 |
self.metric = metric
|
|
@@ -277,6 +299,7 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 277 |
@torch.no_grad()
|
| 278 |
@torch.inference_mode()
|
| 279 |
def search(self, query: torch.Tensor, k: int = 1) -> list[list[RetrievedSample]]:
|
|
|
|
| 280 |
k = min(k, self.embeddings.ntotal)
|
| 281 |
|
| 282 |
if self.normalize:
|
|
@@ -292,7 +315,7 @@ class FaissDocumentIndex(BaseDocumentIndex):
|
|
| 292 |
batch_scores: List[List[float]] = retriever_out[0].detach().cpu().tolist()
|
| 293 |
# Retrieve the passages corresponding to the indices
|
| 294 |
batch_passages = [
|
| 295 |
-
[self.documents.get_label_from_index(i) for i in indices]
|
| 296 |
for indices in batch_top_k
|
| 297 |
]
|
| 298 |
# build the output object
|
|
|
|
| 6 |
from typing import Callable, List, Optional, Union
|
| 7 |
|
| 8 |
import numpy
|
| 9 |
+
import psutil
|
| 10 |
import torch
|
| 11 |
+
from relik.retriever.pytorch_modules import RetrievedSample
|
| 12 |
from torch.utils.data import DataLoader
|
| 13 |
from tqdm import tqdm
|
| 14 |
|
|
|
|
| 45 |
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]] = None,
|
| 46 |
index=None,
|
| 47 |
index_type: str = "Flat",
|
| 48 |
+
nprobe: int = 1,
|
| 49 |
metric: int = faiss.METRIC_INNER_PRODUCT,
|
| 50 |
normalize: bool = False,
|
| 51 |
device: str = "cpu",
|
|
|
|
| 62 |
"The number of documents and embeddings must be the same."
|
| 63 |
)
|
| 64 |
|
| 65 |
+
faiss.omp_set_num_threads(psutil.cpu_count(logical=False))
|
| 66 |
+
|
| 67 |
# device to store the embeddings
|
| 68 |
self.device = device
|
| 69 |
|
|
|
|
| 87 |
self.embeddings = self._build_faiss_index(
|
| 88 |
embeddings=embeddings,
|
| 89 |
index_type=index_type,
|
| 90 |
+
nprobe=nprobe,
|
| 91 |
normalize=normalize,
|
| 92 |
metric=metric,
|
| 93 |
)
|
|
|
|
| 96 |
self,
|
| 97 |
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]],
|
| 98 |
index_type: str,
|
| 99 |
+
nprobe: int,
|
| 100 |
normalize: bool,
|
| 101 |
metric: int,
|
| 102 |
):
|
|
|
|
| 109 |
if self.normalize:
|
| 110 |
index_type = f"L2norm,{index_type}"
|
| 111 |
faiss_vector_size = embeddings.shape[1]
|
| 112 |
+
# if self.device == "cpu":
|
| 113 |
+
# index_type = index_type.replace("x,", "x_HNSW32,")
|
| 114 |
+
# nlist = math.ceil(math.sqrt(faiss_vector_size)) * 4
|
| 115 |
+
# # nlist = 8
|
| 116 |
+
# index_type = index_type.replace(
|
| 117 |
+
# "x", str(nlist)
|
| 118 |
+
# )
|
| 119 |
+
# print("Current nlist:", nlist)
|
| 120 |
+
print("Current index:", index_type)
|
| 121 |
self.embeddings = faiss.index_factory(faiss_vector_size, index_type, metric)
|
| 122 |
|
| 123 |
# convert to GPU
|
|
|
|
| 131 |
embeddings.cpu() if isinstance(embeddings, torch.Tensor) else embeddings
|
| 132 |
)
|
| 133 |
|
| 134 |
+
self.embeddings.hnsw.efConstruction = 20
|
| 135 |
# convert to float32 if embeddings is a torch.Tensor and is float16
|
| 136 |
if isinstance(embeddings, torch.Tensor) and embeddings.dtype == torch.float16:
|
| 137 |
embeddings = embeddings.float()
|
| 138 |
|
| 139 |
+
logger.info("Training the index.")
|
| 140 |
+
self.embeddings.train(embeddings)
|
| 141 |
+
|
| 142 |
+
logger.info("Adding the embeddings to the index.")
|
| 143 |
self.embeddings.add(embeddings)
|
| 144 |
|
| 145 |
+
self.embeddings.nprobe = nprobe
|
| 146 |
+
|
| 147 |
+
# self.embeddings.hnsw.efSearch
|
| 148 |
+
self.embeddings.hnsw.efSearch = 256
|
| 149 |
+
|
| 150 |
+
# self.embeddings.k_factor = 10
|
| 151 |
+
|
| 152 |
# save parameters for saving/loading
|
| 153 |
self.index_type = index_type
|
| 154 |
self.metric = metric
|
|
|
|
| 299 |
@torch.no_grad()
|
| 300 |
@torch.inference_mode()
|
| 301 |
def search(self, query: torch.Tensor, k: int = 1) -> list[list[RetrievedSample]]:
|
| 302 |
+
|
| 303 |
k = min(k, self.embeddings.ntotal)
|
| 304 |
|
| 305 |
if self.normalize:
|
|
|
|
| 315 |
batch_scores: List[List[float]] = retriever_out[0].detach().cpu().tolist()
|
| 316 |
# Retrieve the passages corresponding to the indices
|
| 317 |
batch_passages = [
|
| 318 |
+
[self.documents.get_label_from_index(i) for i in indices if i != -1]
|
| 319 |
for indices in batch_top_k
|
| 320 |
]
|
| 321 |
# build the output object
|
relik/retriever/indexers/inmemory.py
CHANGED
|
@@ -67,6 +67,18 @@ class InMemoryDocumentIndex(BaseDocumentIndex):
|
|
| 67 |
f"Converting to {PRECISION_MAP[precision]}."
|
| 68 |
)
|
| 69 |
self.embeddings = self.embeddings.to(PRECISION_MAP[precision])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# move the embeddings to the desired device
|
| 71 |
if self.embeddings is not None and not self.embeddings.device == device:
|
| 72 |
self.embeddings = self.embeddings.to(device)
|
|
|
|
| 67 |
f"Converting to {PRECISION_MAP[precision]}."
|
| 68 |
)
|
| 69 |
self.embeddings = self.embeddings.to(PRECISION_MAP[precision])
|
| 70 |
+
else:
|
| 71 |
+
if (
|
| 72 |
+
device == "cpu"
|
| 73 |
+
and self.embeddings is not None
|
| 74 |
+
and self.embeddings.dtype != torch.float32
|
| 75 |
+
):
|
| 76 |
+
logger.info(
|
| 77 |
+
"Index vectors are of type {}. Converting to float32.".format(
|
| 78 |
+
self.embeddings.dtype
|
| 79 |
+
)
|
| 80 |
+
)
|
| 81 |
+
self.embeddings = self.embeddings.to(PRECISION_MAP[32])
|
| 82 |
# move the embeddings to the desired device
|
| 83 |
if self.embeddings is not None and not self.embeddings.device == device:
|
| 84 |
self.embeddings = self.embeddings.to(device)
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#------- Core dependencies -------
|
| 2 |
torch>=2.0
|
| 3 |
-
transformers[sentencepiece]>=4.
|
| 4 |
rich>=13.0.0,<14.0.0
|
| 5 |
scikit-learn
|
| 6 |
overrides
|
|
|
|
| 1 |
#------- Core dependencies -------
|
| 2 |
torch>=2.0
|
| 3 |
+
transformers[sentencepiece]>=4.33,<4.34
|
| 4 |
rich>=13.0.0,<14.0.0
|
| 5 |
scikit-learn
|
| 6 |
overrides
|
scripts/blink_freq.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import Counter
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
if __name__ == "__main__":
|
| 7 |
+
counter = Counter()
|
| 8 |
+
|
| 9 |
+
with open("/media/data/EL/blink/train.alby-format.jsonl") as f_in:
|
| 10 |
+
for line in tqdm(f_in):
|
| 11 |
+
sample = json.loads(line)
|
| 12 |
+
for ss, se, label in sample["doc_annotations"]:
|
| 13 |
+
if label == "--NME--":
|
| 14 |
+
continue
|
| 15 |
+
counter.update([label])
|
| 16 |
+
|
| 17 |
+
with open("frequency_blink.txt", "w") as f_out:
|
| 18 |
+
for k, v in counter.most_common():
|
| 19 |
+
f_out.write(f"{k}\t{v}\n")
|
scripts/filter_docs.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import Counter
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from relik.retriever.data.labels import Labels
|
| 7 |
+
|
| 8 |
+
from relik.retriever.indexers.inmemory import InMemoryDocumentIndex
|
| 9 |
+
|
| 10 |
+
if __name__ == "__main__":
|
| 11 |
+
with open("frequency_blink.txt") as f_in:
|
| 12 |
+
frequencies = [l.strip().split("\t")[0] for l in f_in.readlines()]
|
| 13 |
+
|
| 14 |
+
frequencies = set(frequencies[:1_000_000])
|
| 15 |
+
|
| 16 |
+
with open(
|
| 17 |
+
"/root/golden-retriever-v2/data/dpr-like/el/definitions_only_data.txt"
|
| 18 |
+
) as f_in:
|
| 19 |
+
for line in f_in:
|
| 20 |
+
title = line.strip().split(" <def>")[0].strip()
|
| 21 |
+
frequencies.add(title)
|
| 22 |
+
|
| 23 |
+
document_index = InMemoryDocumentIndex.from_pretrained(
|
| 24 |
+
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
new_doc_index = {}
|
| 28 |
+
new_embeddings = []
|
| 29 |
+
|
| 30 |
+
for i in range(document_index.documents.get_label_size()):
|
| 31 |
+
doc = document_index.documents.get_label_from_index(i)
|
| 32 |
+
title = doc.split(" <def>")[0].strip()
|
| 33 |
+
if title in frequencies:
|
| 34 |
+
new_doc_index[doc] = len(new_doc_index)
|
| 35 |
+
new_embeddings.append(document_index.embeddings[i])
|
| 36 |
+
|
| 37 |
+
print(len(new_doc_index))
|
| 38 |
+
print(len(new_embeddings))
|
| 39 |
+
|
| 40 |
+
new_embeddings = torch.stack(new_embeddings, dim=0)
|
| 41 |
+
new_embeddings = new_embeddings.to(torch.float16)
|
| 42 |
+
|
| 43 |
+
print(new_embeddings.shape)
|
| 44 |
+
|
| 45 |
+
new_label_index = Labels()
|
| 46 |
+
new_label_index.add_labels(new_doc_index)
|
| 47 |
+
new_document_index = InMemoryDocumentIndex(
|
| 48 |
+
documents=new_label_index,
|
| 49 |
+
embeddings=new_embeddings,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
new_document_index.save_pretrained(
|
| 53 |
+
"/root/relik-spaces/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered"
|
| 54 |
+
)
|