File size: 4,083 Bytes
4704268
fa1dce6
4704268
c913b1a
4704268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1dce6
4704268
 
fa1dce6
4704268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1dce6
 
4704268
 
 
c913b1a
4704268
 
 
 
 
 
c913b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4704268
 
 
 
 
 
 
 
c913b1a
4704268
 
c913b1a
 
 
4704268
9faef73
4704268
 
 
 
 
 
 
c913b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4704268
 
 
9faef73
 
4704268
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import nemo.collections.asr as nemo_asr
import numpy as np
import pandas as pd
from scipy import signal

TARGET_SR = 16_000  # Hz
TITLE = "NVIDIA's Parakeet TDT 0.6B v2 Demo"
DESCRIPTION = """## Description

NVIDIA's parakeet-tdt-0.6b-v2 is a 600-million-parameter automatic \
speech recognition (ASR) model designed for high-quality English \
transcription, featuring support for punctuation, capitalization, \
and accurate timestamp prediction. This is a state-of-the-art model \
ideal for: accurate word-level timestamp predictions, automatic \
punctuation and capitalization, robust performance on spoken numbers, \
and song lyrics transcription.

### License

The license is comercial friendly:

> GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0 license](https://creativecommons.org/licenses/by/4.0/deed.en).

### Contact

Need help adding transcription to your system? [Let's talk!](mailto:[email protected]).\
At [RidgeRun.ai](https://ridgerun.ai) we'd love to help.

### Links of Interest
* [Model card](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2)
* [NVIDIA NeMO](https://github.com/NVIDIA/NeMo)

## Playground

"""

_model = None


def _to_float32(x: np.ndarray) -> np.ndarray:
    """
    Convert any integer PCM array to float32 in the range [-1, 1].
    Works for signed (int8/16/24/32) and unsigned (uint8) types,
    without hard‑coded magic numbers.
    """
    if not np.issubdtype(x.dtype, np.integer):
        # Already float – just ensure dtype is float32
        return x.astype(np.float32, copy=False)

    info = np.iinfo(x.dtype)
    x = x.astype(np.float32)

    # signed PCM (e.g. int16, int32)
    if info.min < 0:
        # ‑32768..32767 -> ‑1..1
        x /= max(abs(info.min), info.max)

    # unsigned PCM (e.g. uint8 0..255)
    else:
        # 128.0 for uint8
        midpoint = (info.max + 1) / 2
        # 0..255 -> ‑1..1
        x = (x - midpoint) / midpoint

    return x


def _resample(audio: np.ndarray, rate: int, target_rate: int) -> np.ndarray:
    if rate == target_rate:
        return audio

    # Use polyphase filtering for efficient, high‑quality resampling.
    gcd = np.gcd(rate, target_rate)
    up = target_rate // gcd
    down = rate // gcd
    resampled = signal.resample_poly(
        _to_float32(audio), up=up, down=down, axis=0
    )

    return resampled


def _load_model():
    global _model
    if not _model:
        _model = nemo_asr.models.ASRModel.from_pretrained(
            model_name="nvidia/parakeet-tdt-0.6b-v2"
        )

    return _model


def _to_pandas(prediction, keyword):
    return pd.DataFrame(prediction.timestamp[keyword])[
        [keyword, "start", "end"]
    ]


def _invoke_model(model, audio: np.ndarray):
    prediction = model.transcribe(audio=audio, timestamps=True)[0]

    text = prediction.text

    chars = _to_pandas(prediction, "char")
    words = _to_pandas(prediction, "word")
    segments = _to_pandas(prediction, "segment")

    return text, chars, words, segments


def transcribe(audio: tuple[np.ndarray, int] | None):
    if not audio:
        return "No audio received. Please upload or record something"

    rate, data = audio

    model = _load_model()
    data = _to_float32(data)
    data = _resample(data, rate, TARGET_SR)
    text, chars, words, segments = _invoke_model(model, data)

    return text, segments, words, chars


app = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(
        sources=["upload", "microphone"],
        type="numpy",
        label="Upload or record audio",
    ),
    outputs=[
        gr.Textbox(label="Transcription", show_copy_button=True),
        gr.Dataframe(
            label="Segments",
            headers=["Segment", "Start", "End"],
        ),
        gr.Dataframe(
            label="Words",
            headers=["Word", "Start", "End"],
        ),
        gr.Dataframe(
            label="Characters",
            headers=["Character", "Start", "End"],
        ),
    ],
    title=TITLE,
    description=DESCRIPTION,
)

if __name__ == "__main__":
    app.launch()