Commit
·
9415e6f
1
Parent(s):
defebef
added
Browse files- app.py +16 -566
- flagged/Output/tmp0n4o_4xk.json +1 -0
- flagged/Output/tmp53qk_28w.json +1 -0
- flagged/Output/tmp5geu50qc.json +1 -0
- flagged/Output/tmpilj11fim.json +1 -0
- flagged/Output/tmpir2yb79m.json +1 -0
- flagged/Output/tmpl1qism4a.json +1 -0
- flagged/Output/tmps39i7gz8.json +1 -0
- flagged/Output/tmpu4xpbklk.json +1 -0
- flagged/log.csv +9 -0
- requirements.txt +3 -16
app.py
CHANGED
|
@@ -1,571 +1,21 @@
|
|
| 1 |
-
import
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import wikipedia
|
| 4 |
-
from wikipedia import WikipediaPage
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import spacy
|
| 7 |
-
import unicodedata
|
| 8 |
-
from nltk.corpus import stopwords
|
| 9 |
-
import numpy as np
|
| 10 |
-
import nltk
|
| 11 |
-
from newspaper import Article
|
| 12 |
-
|
| 13 |
-
nltk.download('stopwords')
|
| 14 |
-
from string import punctuation
|
| 15 |
-
import json
|
| 16 |
-
import time
|
| 17 |
-
from datetime import datetime, timedelta
|
| 18 |
-
import urllib
|
| 19 |
-
from io import BytesIO
|
| 20 |
-
from PIL import Image, UnidentifiedImageError
|
| 21 |
-
from SPARQLWrapper import SPARQLWrapper, JSON, N3
|
| 22 |
-
from fuzzywuzzy import process, fuzz
|
| 23 |
-
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
|
| 24 |
from transformers import pipeline
|
| 25 |
-
import
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class ExtractArticleEntities:
|
| 31 |
-
""" Extract article entities from a document using natural language processing (NLP) and fuzzy matching.
|
| 32 |
-
Parameters
|
| 33 |
-
- text: a string or the text of a news article to be parsed
|
| 34 |
-
Usage:
|
| 35 |
-
import ExtractArticleEntities
|
| 36 |
-
instantiate with text parameter ie. entities = ExtractArticleEntities(text)
|
| 37 |
-
retrieve Who, What, When, Where entities with entities.www_json
|
| 38 |
-
Non-organised entities with entiities.json
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
def __init__(self, text):
|
| 42 |
-
self.text = text # preprocess text at initialisation
|
| 43 |
-
self.text = self.preprocessing(self.text)
|
| 44 |
-
print(self.text)
|
| 45 |
-
print('_____text_____')
|
| 46 |
-
self.json = {}
|
| 47 |
-
# Create empty dataframe to hold entity data for ease of processing
|
| 48 |
-
self.entity_df = pd.DataFrame(columns=["entity", "description"])
|
| 49 |
-
# Load the spacy model
|
| 50 |
-
|
| 51 |
-
# self.nlp = en_core_web_lg.load()
|
| 52 |
-
self.nlp = pipeline(model="51la5/roberta-large-NER")
|
| 53 |
-
|
| 54 |
-
# Parse the text
|
| 55 |
-
self.entity_df = self.get_who_what_where_when()
|
| 56 |
-
# Disambiguate entities
|
| 57 |
-
|
| 58 |
-
self.entity_df = self.fuzzy_disambiguation()
|
| 59 |
-
self.get_related_entity()
|
| 60 |
-
self.get_popularity()
|
| 61 |
-
# Create JSON representation of entities
|
| 62 |
-
self.entity_df = self.entity_df.drop_duplicates(subset=["description"])
|
| 63 |
-
|
| 64 |
-
self.entity_df = self.entity_df.reset_index(drop=True)
|
| 65 |
-
|
| 66 |
-
# ungrouped entity returned as json
|
| 67 |
-
self.json = self.entity_json()
|
| 68 |
-
# return json with entities grouped into who, what, where, when keys
|
| 69 |
-
self.www_json = self.get_wwww_json()
|
| 70 |
-
|
| 71 |
-
# def get_related_entity(self):
|
| 72 |
-
# entities = self.entity_df.description
|
| 73 |
-
# labels = self.entity_df.entity
|
| 74 |
-
# related_entity = []
|
| 75 |
-
# for entity, label in zip(entities, labels):
|
| 76 |
-
# if label in ('PERSON', 'ORG','GPE','NORP','LOC'):
|
| 77 |
-
# related_entity.append(wikipedia.search(entity, 3))
|
| 78 |
-
# else:
|
| 79 |
-
# related_entity.append([None])
|
| 80 |
-
|
| 81 |
-
# self.entity_df['Wikipedia Entity'] = related_entity
|
| 82 |
-
|
| 83 |
-
def get_popularity(self):
|
| 84 |
-
# names = self.entity_df.description
|
| 85 |
-
# related_names = self.entity_df['Matched Entity']
|
| 86 |
-
# for name, related_name in zip(names, related_names):
|
| 87 |
-
# if related_name:
|
| 88 |
-
# related_name.append(name)
|
| 89 |
-
# pytrends.build_payload(related_name, timeframe='now 4-d')
|
| 90 |
-
# st.dataframe(pytrends.interest_over_time())
|
| 91 |
-
# time.sleep(2)
|
| 92 |
-
master_df = pd.DataFrame()
|
| 93 |
-
view_list = []
|
| 94 |
-
for entity in self.entity_df['Matched Entity']:
|
| 95 |
-
if entity:
|
| 96 |
-
entity_to_look = entity[0]
|
| 97 |
-
# print(entity_to_look, '_______')
|
| 98 |
-
entity_to_look = entity_to_look.replace(' ', '_')
|
| 99 |
-
print(entity_to_look, '_______')
|
| 100 |
-
headers = {
|
| 101 |
-
'accept': 'application/json',
|
| 102 |
-
'User-Agent': 'Foo bar'
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
now = datetime.now()
|
| 106 |
-
now_dt = now.strftime(r'%Y%m%d')
|
| 107 |
-
week_back = now - timedelta(days=7)
|
| 108 |
-
week_back_dt = week_back.strftime(r'%Y%m%d')
|
| 109 |
-
resp = requests.get(
|
| 110 |
-
f'https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents/{entity_to_look}/daily/{week_back_dt}/{now_dt}',
|
| 111 |
-
headers=headers)
|
| 112 |
-
data = resp.json()
|
| 113 |
-
# print(data)
|
| 114 |
-
df = pd.json_normalize(data['items'])
|
| 115 |
-
view_count = sum(df['views'])
|
| 116 |
-
|
| 117 |
-
else:
|
| 118 |
-
view_count = 0
|
| 119 |
-
view_list.append(view_count)
|
| 120 |
-
|
| 121 |
-
self.entity_df['Views'] = view_list
|
| 122 |
-
|
| 123 |
-
for entity in ('PERSON', 'ORG', 'GPE', 'NORP', 'LOC'):
|
| 124 |
-
related_entity_view_list = []
|
| 125 |
-
grouped_df = self.entity_df[self.entity_df['entity'] == entity]
|
| 126 |
-
grouped_df['Matched count'] = grouped_df['fuzzy_match'].apply(len)
|
| 127 |
-
grouped_df['Wiki count'] = grouped_df['Matched Entity'].apply(len)
|
| 128 |
-
|
| 129 |
-
grouped_df = grouped_df.sort_values(by=['Views', 'Matched count', 'Wiki count'],
|
| 130 |
-
ascending=False).reset_index(drop=True)
|
| 131 |
-
if not grouped_df.empty:
|
| 132 |
-
# st.dataframe(grouped_df)
|
| 133 |
-
master_df = pd.concat([master_df, grouped_df])
|
| 134 |
-
|
| 135 |
-
self.sorted_entity_df = master_df
|
| 136 |
-
if 'Views' in self.sorted_entity_df:
|
| 137 |
-
self.sorted_entity_df = self.sorted_entity_df.sort_values(by=['Views'], ascending=False).reset_index(
|
| 138 |
-
drop=True)
|
| 139 |
-
# st.dataframe(self.sorted_entity_df)
|
| 140 |
-
# names = grouped_df['description'][:5].values
|
| 141 |
-
# print(names, type(names))
|
| 142 |
-
# if names.any():
|
| 143 |
-
# # pytrends.build_payload(names, timeframe='now 1-m')
|
| 144 |
-
# st.dataframe(pytrends.get_historical_interest(names,
|
| 145 |
-
# year_start=2022, month_start=10, day_start=1,
|
| 146 |
-
# hour_start=0,
|
| 147 |
-
# year_end=2022, month_end=10, day_end=21,
|
| 148 |
-
# hour_end=0, cat=0, geo='', gprop='', sleep=0))
|
| 149 |
-
# st.dataframe()
|
| 150 |
-
# time.sleep(2)
|
| 151 |
-
# st.dataframe(grouped_df)
|
| 152 |
-
|
| 153 |
-
def get_related_entity(self):
|
| 154 |
-
names = self.entity_df.description
|
| 155 |
-
entities = self.entity_df.entity
|
| 156 |
-
self.related_entity = []
|
| 157 |
-
match_scores = []
|
| 158 |
-
for name, entity in zip(names, entities):
|
| 159 |
-
if entity in ('PERSON', 'ORG', 'GPE', 'NORP', 'LOC'):
|
| 160 |
-
related_names = wikipedia.search(name, 10)
|
| 161 |
-
self.related_entity.append(related_names)
|
| 162 |
-
matches = process.extract(name, related_names)
|
| 163 |
-
match_scores.append([match[0] for match in matches if match[1] >= 90])
|
| 164 |
-
else:
|
| 165 |
-
self.related_entity.append([None])
|
| 166 |
-
match_scores.append([])
|
| 167 |
-
# Remove nulls
|
| 168 |
-
|
| 169 |
-
self.entity_df['Wikipedia Entity'] = self.related_entity
|
| 170 |
-
self.entity_df['Matched Entity'] = match_scores
|
| 171 |
-
|
| 172 |
-
def fuzzy_disambiguation(self):
|
| 173 |
-
# Load the entity data
|
| 174 |
-
self.entity_df['fuzzy_match'] = ''
|
| 175 |
-
# Load the entity data
|
| 176 |
-
person_choices = self.entity_df.loc[self.entity_df['entity'] == 'PERSON']
|
| 177 |
-
org_choices = self.entity_df.loc[self.entity_df['entity'] == 'ORG']
|
| 178 |
-
where_choices = self.entity_df.loc[self.entity_df['entity'] == 'GPE']
|
| 179 |
-
norp_choices = self.entity_df.loc[self.entity_df['entity'] == 'NORP']
|
| 180 |
-
loc_choices = self.entity_df.loc[self.entity_df['entity'] == 'LOC']
|
| 181 |
-
date_choices = self.entity_df.loc[self.entity_df['entity'] == 'DATE']
|
| 182 |
-
|
| 183 |
-
def fuzzy_match(row, choices):
|
| 184 |
-
'''This function disambiguates entities by looking for maximum three matches with a score of 80 or more
|
| 185 |
-
for each of the entity types. If there is no match, then the function returns None. '''
|
| 186 |
-
match = process.extract(row["description"], choices["description"], limit=3)
|
| 187 |
-
|
| 188 |
-
match = [m[0] for m in match if m[1] > 80 and m[1] != 100]
|
| 189 |
-
|
| 190 |
-
if len(match) == 0:
|
| 191 |
-
match = []
|
| 192 |
-
|
| 193 |
-
if match:
|
| 194 |
-
self.fuzzy_match_dict[row["description"]] = match
|
| 195 |
-
|
| 196 |
-
return match
|
| 197 |
-
|
| 198 |
-
# Apply the fuzzy matching function to the entity dataframe
|
| 199 |
-
|
| 200 |
-
self.fuzzy_match_dict = {}
|
| 201 |
-
|
| 202 |
-
for i, row in self.entity_df.iterrows():
|
| 203 |
-
|
| 204 |
-
if row['entity'] == 'PERSON':
|
| 205 |
-
|
| 206 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, person_choices)
|
| 207 |
-
|
| 208 |
-
elif row['entity'] == 'ORG':
|
| 209 |
-
|
| 210 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, org_choices)
|
| 211 |
-
elif row['entity'] == 'GPE':
|
| 212 |
-
|
| 213 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, where_choices)
|
| 214 |
-
|
| 215 |
-
elif row['entity'] == 'NORP':
|
| 216 |
-
|
| 217 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, norp_choices)
|
| 218 |
-
elif row['entity'] == 'LOC':
|
| 219 |
-
|
| 220 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, loc_choices)
|
| 221 |
-
elif row['entity'] == 'DATE':
|
| 222 |
-
|
| 223 |
-
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, date_choices)
|
| 224 |
-
|
| 225 |
-
return self.entity_df
|
| 226 |
-
|
| 227 |
-
def preprocessing(self, text):
|
| 228 |
-
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
|
| 229 |
-
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
|
| 230 |
-
converts them to their unicode equivalents. """
|
| 231 |
-
|
| 232 |
-
# remove punctuation
|
| 233 |
-
text = text.translate(str.maketrans("", "", punctuation))
|
| 234 |
-
# normalize the text
|
| 235 |
-
stop_words = stopwords.words('english')
|
| 236 |
-
|
| 237 |
-
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
|
| 238 |
-
filtered_words = [word for word in self.text.split()] # if word not in stop_words]
|
| 239 |
-
|
| 240 |
-
# This is very hacky. Need a better way of handling bad encoding
|
| 241 |
-
pre_text = " ".join(filtered_words)
|
| 242 |
-
pre_text = pre_text = pre_text.replace(' ', ' ')
|
| 243 |
-
pre_text = pre_text.replace('’', "'")
|
| 244 |
-
pre_text = pre_text.replace('“', '"')
|
| 245 |
-
pre_text = pre_text.replace('â€', '"')
|
| 246 |
-
pre_text = pre_text.replace('‘', "'")
|
| 247 |
-
pre_text = pre_text.replace('…', '...')
|
| 248 |
-
pre_text = pre_text.replace('–', '-')
|
| 249 |
-
pre_text = pre_text.replace("\x9d", '-')
|
| 250 |
-
# normalize the text
|
| 251 |
-
pre_text = unicodedata.normalize("NFKD", pre_text)
|
| 252 |
-
# strip punctuation again as some remains in first pass
|
| 253 |
-
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
|
| 254 |
-
|
| 255 |
-
return pre_text
|
| 256 |
-
|
| 257 |
-
def get_who_what_where_when(self):
|
| 258 |
-
"""Get entity information in a document.
|
| 259 |
-
This function will return a DataFrame with the following columns:
|
| 260 |
-
- entity: the entity being queried
|
| 261 |
-
- description: a brief description of the entity
|
| 262 |
-
Usage:
|
| 263 |
-
get_who_what_where_when(text)
|
| 264 |
-
Example:
|
| 265 |
-
> get_who_what_where_when('This is a test')
|
| 266 |
-
PERSON
|
| 267 |
-
ORG
|
| 268 |
-
GPE
|
| 269 |
-
LOC
|
| 270 |
-
PRODUCT
|
| 271 |
-
EVENT
|
| 272 |
-
LAW
|
| 273 |
-
LANGUAGE
|
| 274 |
-
NORP
|
| 275 |
-
DATE
|
| 276 |
-
GPE
|
| 277 |
-
TIME"""
|
| 278 |
-
|
| 279 |
-
# list to hold entity data
|
| 280 |
-
article_entity_list = []
|
| 281 |
-
# tokenize the text
|
| 282 |
-
doc = self.nlp(self.text)
|
| 283 |
-
# iterate over the entities in the document but only keep those which are meaningful
|
| 284 |
-
desired_entities = ['PERSON', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'LAW', 'LANGUAGE', 'NORP', 'DATE', 'GPE',
|
| 285 |
-
'TIME']
|
| 286 |
-
self.label_dict = {}
|
| 287 |
-
|
| 288 |
-
# stop_words = stopwords.words('english')
|
| 289 |
-
for ent in doc.ents:
|
| 290 |
-
|
| 291 |
-
self.label_dict[ent] = ent.label_
|
| 292 |
-
if ent.label_ in desired_entities:
|
| 293 |
-
# add the entity to the list
|
| 294 |
-
entity_dict = {ent.label_: ent.text}
|
| 295 |
-
|
| 296 |
-
article_entity_list.append(entity_dict)
|
| 297 |
-
|
| 298 |
-
# dedupe the entities but only on exact match of values as occasional it will assign an ORG entity to PER
|
| 299 |
-
deduplicated_entities = {frozenset(item.values()):
|
| 300 |
-
item for item in article_entity_list}.values()
|
| 301 |
-
# create a dataframe from the entities
|
| 302 |
-
for record in deduplicated_entities:
|
| 303 |
-
record_df = pd.DataFrame(record.items(), columns=["entity", "description"])
|
| 304 |
-
self.entity_df = pd.concat([self.entity_df, record_df], ignore_index=True)
|
| 305 |
-
|
| 306 |
-
print(self.entity_df)
|
| 307 |
-
print('______________________')
|
| 308 |
-
return self.entity_df
|
| 309 |
-
|
| 310 |
-
def entity_json(self):
|
| 311 |
-
"""Returns a JSON representation of an entity defined by the `entity_df` dataframe. The `entity_json` function
|
| 312 |
-
will return a JSON object with the following fields:
|
| 313 |
-
- entity: The type of the entity in the text
|
| 314 |
-
- description: The name of the entity as described in the input text
|
| 315 |
-
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
|
| 316 |
-
"""
|
| 317 |
-
|
| 318 |
-
self.json = json.loads(self.entity_df.to_json(orient='records'))
|
| 319 |
-
# self.json = json.dumps(self.json, indent=2)
|
| 320 |
-
return self.json
|
| 321 |
-
|
| 322 |
-
def get_wwww_json(self):
|
| 323 |
-
"""This function returns a JSON representation of the `get_who_what_where_when` function. The `get_www_json`
|
| 324 |
-
function will return a JSON object with the following fields:
|
| 325 |
-
- entity: The type of the entity in the text
|
| 326 |
-
- description: The name of the entity as described in the input text
|
| 327 |
-
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
|
| 328 |
-
"""
|
| 329 |
-
|
| 330 |
-
# create a json object from the entity dataframe
|
| 331 |
-
who_dict = {"who": [ent for ent in self.entity_json() if ent['entity'] in ['ORG', 'PERSON']]}
|
| 332 |
-
where_dict = {"where": [ent for ent in self.entity_json() if ent['entity'] in ['GPE', 'LOC']]}
|
| 333 |
-
when_dict = {"when": [ent for ent in self.entity_json() if ent['entity'] in ['DATE', 'TIME']]}
|
| 334 |
-
what_dict = {
|
| 335 |
-
"what": [ent for ent in self.entity_json() if ent['entity'] in ['PRODUCT', 'EVENT', 'LAW', 'LANGUAGE',
|
| 336 |
-
'NORP']]}
|
| 337 |
-
article_wwww = [who_dict, where_dict, when_dict, what_dict]
|
| 338 |
-
self.wwww_json = json.dumps(article_wwww, indent=2)
|
| 339 |
-
|
| 340 |
-
return self.wwww_json
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
news_article = st.text_input('Paste an Article here to be parsed')
|
| 344 |
-
if 'parsed' not in st.session_state:
|
| 345 |
-
st.session_state['parsed'] = None
|
| 346 |
-
st.session_state['article'] = None
|
| 347 |
-
if news_article:
|
| 348 |
-
st.write('Your news article is')
|
| 349 |
-
st.write(news_article)
|
| 350 |
-
|
| 351 |
-
if st.button('Get details'):
|
| 352 |
-
|
| 353 |
-
parsed = ExtractArticleEntities(news_article)
|
| 354 |
-
if parsed:
|
| 355 |
-
st.session_state['article'] = parsed.sorted_entity_df
|
| 356 |
-
st.session_state['parsed'] = True
|
| 357 |
-
st.session_state['json'] = parsed.www_json
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
# if not st.session_state['article'].empty:
|
| 361 |
-
|
| 362 |
-
def preprocessing(text):
|
| 363 |
-
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
|
| 364 |
-
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
|
| 365 |
-
converts them to their unicode equivalents. """
|
| 366 |
-
|
| 367 |
-
# remove punctuation
|
| 368 |
-
if text:
|
| 369 |
-
text = text.translate(str.maketrans("", "", punctuation))
|
| 370 |
-
# normalize the text
|
| 371 |
-
stop_words = stopwords.words('english')
|
| 372 |
-
|
| 373 |
-
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
|
| 374 |
-
filtered_words = [word for word in text.split()] # if word not in stop_words]
|
| 375 |
-
|
| 376 |
-
# This is very hacky. Need a better way of handling bad encoding
|
| 377 |
-
pre_text = " ".join(filtered_words)
|
| 378 |
-
pre_text = pre_text = pre_text.replace(' ', ' ')
|
| 379 |
-
pre_text = pre_text.replace('’', "'")
|
| 380 |
-
pre_text = pre_text.replace('“', '"')
|
| 381 |
-
pre_text = pre_text.replace('â€', '"')
|
| 382 |
-
pre_text = pre_text.replace('‘', "'")
|
| 383 |
-
pre_text = pre_text.replace('…', '...')
|
| 384 |
-
pre_text = pre_text.replace('–', '-')
|
| 385 |
-
pre_text = pre_text.replace("\x9d", '-')
|
| 386 |
-
# normalize the text
|
| 387 |
-
pre_text = unicodedata.normalize("NFKD", pre_text)
|
| 388 |
-
# strip punctuation again as some remains in first pass
|
| 389 |
-
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
|
| 390 |
-
|
| 391 |
-
else:
|
| 392 |
-
pre_text = None
|
| 393 |
-
return pre_text
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
def filter_wiki_df(df):
|
| 397 |
-
key_list = df.keys()[:2]
|
| 398 |
-
# df.to_csv('test.csv')
|
| 399 |
-
df = df[key_list]
|
| 400 |
-
# if len(df.keys()) == 2:
|
| 401 |
-
df['Match Check'] = np.where(df[df.keys()[0]] != df[df.keys()[1]], True, False)
|
| 402 |
-
|
| 403 |
-
df = df[df['Match Check'] != False]
|
| 404 |
-
df = df[key_list]
|
| 405 |
-
df = df.dropna(how='any').reset_index(drop=True)
|
| 406 |
-
# filtered_term = []
|
| 407 |
-
# for terms in df[df.keys()[0]]:
|
| 408 |
-
# if isinstance(terms, str):
|
| 409 |
-
# filtered_term.append(preprocessing(terms))
|
| 410 |
-
# else:
|
| 411 |
-
# filtered_term.append(None)
|
| 412 |
-
# df[df.keys()[0]] = filtered_term
|
| 413 |
-
df.rename(columns={key_list[0]: 'Attribute', key_list[1]: 'Value'}, inplace=True)
|
| 414 |
-
|
| 415 |
-
return df
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
def get_entity_from_selectbox(related_entity):
|
| 419 |
-
entity = st.selectbox('Please select the term:', related_entity, key='foo')
|
| 420 |
-
if entity:
|
| 421 |
-
summary_entity = wikipedia.summary(entity, 3)
|
| 422 |
-
return summary_entity
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
if st.session_state['parsed']:
|
| 426 |
-
df = st.session_state['article']
|
| 427 |
-
# left, right = st.columns(2)
|
| 428 |
-
# with left:
|
| 429 |
-
df_to_st = pd.DataFrame()
|
| 430 |
-
|
| 431 |
-
df_to_st['Name'] = df['description']
|
| 432 |
-
df_to_st['Is a type of'] = df['entity']
|
| 433 |
-
df_to_st['Related to'] = df['Matched Entity']
|
| 434 |
-
df_to_st['Is a type of'] = df_to_st['Is a type of'].replace({'PERSON': 'Person',
|
| 435 |
-
'ORG': 'Organization',
|
| 436 |
-
'GPE': 'Political Location',
|
| 437 |
-
'NORP': 'Political or Religious Groups',
|
| 438 |
-
'LOC': 'Non Political Location'})
|
| 439 |
-
gb = GridOptionsBuilder.from_dataframe(df_to_st)
|
| 440 |
-
gb.configure_pagination(paginationAutoPageSize=True) # Add pagination
|
| 441 |
-
gb.configure_side_bar() # Add a sidebar
|
| 442 |
-
gb.configure_selection('multiple', use_checkbox=True,
|
| 443 |
-
groupSelectsChildren="Group checkbox select children") # Enable multi-row selection
|
| 444 |
-
gridOptions = gb.build()
|
| 445 |
-
|
| 446 |
-
# st.dataframe(df_to_st)
|
| 447 |
-
grid_response = AgGrid(
|
| 448 |
-
df_to_st,
|
| 449 |
-
gridOptions=gridOptions,
|
| 450 |
-
data_return_mode='AS_INPUT',
|
| 451 |
-
update_mode='MODEL_CHANGED',
|
| 452 |
-
fit_columns_on_grid_load=False,
|
| 453 |
-
enable_enterprise_modules=True,
|
| 454 |
-
height=350,
|
| 455 |
-
width='100%',
|
| 456 |
-
reload_data=True
|
| 457 |
-
)
|
| 458 |
-
|
| 459 |
-
data = grid_response['data']
|
| 460 |
-
selected = grid_response['selected_rows']
|
| 461 |
-
selected_df = pd.DataFrame(selected)
|
| 462 |
-
if not selected_df.empty:
|
| 463 |
-
selected_entity = selected_df[['Name', 'Is a type of', 'Related to']]
|
| 464 |
-
st.dataframe(selected_entity)
|
| 465 |
-
|
| 466 |
-
# with right:
|
| 467 |
-
# st.json(st.session_state['json'])
|
| 468 |
-
|
| 469 |
-
entities_list = df['description']
|
| 470 |
-
# selected_entity = st.selectbox('Which entity you want to choose?',
|
| 471 |
-
# entities_list)
|
| 472 |
-
if not selected_df.empty and selected_entity['Name'].any():
|
| 473 |
-
|
| 474 |
-
# lookup_url = rf'https://lookup.dbpedia.org/api/search?query={selected_entity}'
|
| 475 |
-
# r = requests.get(lookup_url)
|
| 476 |
-
|
| 477 |
-
selected_row = df.loc[df['description'] == selected_entity['Name'][0]]
|
| 478 |
-
|
| 479 |
-
entity_value = selected_row.values
|
| 480 |
-
# st.write('Entity is a ', entity_value[0][0])
|
| 481 |
-
label, name, fuzzy, related, related_match, _, _, _ = entity_value[0]
|
| 482 |
-
not_matched = [word for word in related if word not in related_match]
|
| 483 |
-
fuzzy = fuzzy[0] if len(fuzzy) > 0 else ''
|
| 484 |
-
related = related[0] if len(related) > 0 else ''
|
| 485 |
-
not_matched = not_matched[0] if len(not_matched) > 0 else related
|
| 486 |
-
|
| 487 |
-
related_entity_list = [name, fuzzy, not_matched]
|
| 488 |
-
related_entity = entity_value[0][1:]
|
| 489 |
-
|
| 490 |
-
google_query_term = ' '.join(related_entity_list)
|
| 491 |
-
# search()
|
| 492 |
-
try:
|
| 493 |
-
urls = [i for i in search(google_query_term, stop=10, pause=2.0, tld='com', lang='en', tbs='0',
|
| 494 |
-
user_agent=get_random_user_agent())]
|
| 495 |
-
except:
|
| 496 |
-
urls = []
|
| 497 |
-
# urls = search(google_query_term+' news latest', num_results=10)
|
| 498 |
-
st.session_state['wiki_summary'] = False
|
| 499 |
-
all_related_entity = []
|
| 500 |
-
for el in related_entity[:-2]:
|
| 501 |
-
if isinstance(el, str):
|
| 502 |
-
all_related_entity.append(el)
|
| 503 |
-
elif isinstance(el, int):
|
| 504 |
-
all_related_entity.append(str(el))
|
| 505 |
-
else:
|
| 506 |
-
all_related_entity.extend(el)
|
| 507 |
-
# [ if type(el) == 'int' all_related_entity.extend(el) else all_related_entity.extend([el])for el in related_entity]
|
| 508 |
-
for entity in all_related_entity:
|
| 509 |
-
# try:
|
| 510 |
-
if True:
|
| 511 |
-
if entity:
|
| 512 |
-
entity = entity.replace(' ', '_')
|
| 513 |
-
query = f'''
|
| 514 |
-
SELECT ?name ?comment ?image
|
| 515 |
-
WHERE {{ dbr:{entity} rdfs:label ?name.
|
| 516 |
-
dbr:{entity} rdfs:comment ?comment.
|
| 517 |
-
dbr:{entity} dbo:thumbnail ?image.
|
| 518 |
-
|
| 519 |
-
FILTER (lang(?name) = 'en')
|
| 520 |
-
FILTER (lang(?comment) = 'en')
|
| 521 |
-
}}'''
|
| 522 |
-
sparql.setQuery(query)
|
| 523 |
-
|
| 524 |
-
sparql.setReturnFormat(JSON)
|
| 525 |
-
qres = sparql.query().convert()
|
| 526 |
-
if qres['results']['bindings']:
|
| 527 |
-
result = qres['results']['bindings'][0]
|
| 528 |
-
name, comment, image_url = result['name']['value'], result['comment']['value'], result['image'][
|
| 529 |
-
'value']
|
| 530 |
-
# urllib.request.urlretrieve(image_url, "img.jpg")
|
| 531 |
-
|
| 532 |
-
# img = Image.open("/Users/anujkarn/NER/img.jpg")
|
| 533 |
-
wiki_url = f'https://en.wikipedia.org/wiki/{entity}'
|
| 534 |
-
|
| 535 |
-
st.write(name)
|
| 536 |
-
# st.image(img)
|
| 537 |
-
st.write(image_url)
|
| 538 |
-
# try:
|
| 539 |
-
response = requests.get(image_url)
|
| 540 |
-
try:
|
| 541 |
-
related_image = Image.open(BytesIO(response.content))
|
| 542 |
-
st.image(related_image)
|
| 543 |
-
except UnidentifiedImageError:
|
| 544 |
-
st.write('Not able to get image')
|
| 545 |
-
pass
|
| 546 |
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
|
| 553 |
-
st.write('Showing desciption for entity:', name)
|
| 554 |
-
st.dataframe(wiki_knowledge_df)
|
| 555 |
-
# if st.button('Want something else?'):
|
| 556 |
-
# summary_entity = get_entity_from_selectbox(all_related_entity)
|
| 557 |
-
break
|
| 558 |
-
# summary_entity = wikipedia.summary(entity, 3)
|
| 559 |
-
else:
|
| 560 |
-
summary_entity = None
|
| 561 |
-
if not summary_entity:
|
| 562 |
-
try:
|
| 563 |
-
summary_entity = get_entity_from_selectbox(all_related_entity)
|
| 564 |
-
# page = WikipediaPage(entity)
|
| 565 |
|
| 566 |
-
|
| 567 |
-
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
-
|
| 570 |
-
st.write(f'Summary for {selected_entity["Name"][0]}')
|
| 571 |
-
st.write(summary_entity)
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("51la5/roberta-large-NER")
|
| 5 |
+
model = AutoModelForTokenClassification.from_pretrained("51la5/roberta-large-NER")
|
| 6 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer,grouped_entities=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
def get_ner(text):
|
| 9 |
+
output = classifier(text)
|
| 10 |
+
for elm in output:
|
| 11 |
+
elm['entity'] = elm['entity_group']
|
| 12 |
+
return {"text": text, "entities": output}
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
demo = gr.Interface(fn=get_ner,
|
| 16 |
+
title="Atoqli nomlarni topish(NER)",
|
| 17 |
+
inputs=gr.Textbox(lines=4, placeholder="Matinni kiriting!", label="Matn*"),
|
| 18 |
+
outputs=gr.HighlightedText(label="Natija:")
|
| 19 |
+
)
|
| 20 |
|
| 21 |
+
demo.launch()
|
|
|
|
|
|
flagged/Output/tmp0n4o_4xk.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmp53qk_28w.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmp5geu50qc.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpilj11fim.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpir2yb79m.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpl1qism4a.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmps39i7gz8.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/Output/tmpu4xpbklk.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[["", null], ["Alya", "PER"], [" told ", null], ["Jasmine", "PER"], [" that ", null], ["Andrew", "PER"], [" could pay with cash..", null]]
|
flagged/log.csv
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Input,Output,flag,username,timestamp
|
| 2 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp5geu50qc.json,,,2022-12-27 12:42:53.593547
|
| 3 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp53qk_28w.json,,,2022-12-27 12:42:58.863873
|
| 4 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpir2yb79m.json,,,2022-12-27 12:42:59.338345
|
| 5 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpu4xpbklk.json,,,2022-12-27 12:42:59.579644
|
| 6 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpl1qism4a.json,,,2022-12-27 12:42:59.767400
|
| 7 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmp0n4o_4xk.json,,,2022-12-27 12:43:01.036641
|
| 8 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmpilj11fim.json,,,2022-12-27 12:43:02.413494
|
| 9 |
+
Alya told Jasmine that Andrew could pay with cash..,/home/pc-work/Documents/Git/HuggingFace/Uz-NER/flagged/Output/tmps39i7gz8.json,,,2022-12-27 12:43:02.875712
|
requirements.txt
CHANGED
|
@@ -1,16 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
matplotlib==3.3.4
|
| 5 |
-
newspaper3k==0.2.8
|
| 6 |
-
nltk==3.6.1
|
| 7 |
-
numpy==1.19.5
|
| 8 |
-
pandas==1.2.4
|
| 9 |
-
Pillow==9.3.0
|
| 10 |
-
requests==2.25.1
|
| 11 |
-
spacy
|
| 12 |
-
SPARQLWrapper==2.0.0
|
| 13 |
-
streamlit==1.11.1
|
| 14 |
-
wikipedia==1.4.0
|
| 15 |
-
streamlit-aggrid
|
| 16 |
-
transformers==2.5.0
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|