Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
|
6 |
+
# Load Hugging Face OCR model
|
7 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
9 |
+
|
10 |
+
# Directory where patient records are stored
|
11 |
+
PATIENT_RECORDS_DIR = "records/"
|
12 |
+
|
13 |
+
# Function to extract patient name from filename
|
14 |
+
def extract_patient_name(file_name):
|
15 |
+
match = re.match(r"([A-Za-z]+[A-Za-z]*)_.*\.(jpg|png|jpeg|pdf)$", file_name)
|
16 |
+
if match:
|
17 |
+
return match.group(1)
|
18 |
+
return None
|
19 |
+
|
20 |
+
# OCR function
|
21 |
+
def extract_text_from_image(image_path):
|
22 |
+
image = Image.open(image_path).convert("RGB")
|
23 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
24 |
+
generated_ids = model.generate(pixel_values)
|
25 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
26 |
+
return generated_text.strip()
|
27 |
+
|
28 |
+
# Save text to patient record
|
29 |
+
def save_to_patient_record(patient_name, text):
|
30 |
+
os.makedirs(PATIENT_RECORDS_DIR, exist_ok=True)
|
31 |
+
filepath = os.path.join(PATIENT_RECORDS_DIR, f"{patient_name}_records.txt")
|
32 |
+
with open(filepath, "a") as file:
|
33 |
+
file.write("\n\n===== New Upload =====\n")
|
34 |
+
file.write(text)
|
35 |
+
|
36 |
+
# Main process
|
37 |
+
def process_uploaded_lab_result(file_path):
|
38 |
+
print(f"Processing: {file_path}")
|
39 |
+
patient_name = extract_patient_name(os.path.basename(file_path))
|
40 |
+
if not patient_name:
|
41 |
+
return "❌ Could not determine patient name from filename."
|
42 |
+
|
43 |
+
ocr_text = extract_text_from_image(file_path)
|
44 |
+
save_to_patient_record(patient_name, ocr_text)
|
45 |
+
return f"✅ OCR completed and saved under {patient_name}'s record."
|
46 |
+
|
47 |
+
# Example usage
|
48 |
+
if __name__ == "__main__":
|
49 |
+
file_to_upload = "JuanDelaCruz_2025-06-13.jpg" # Example uploaded file
|
50 |
+
result = process_uploaded_lab_result(file_to_upload)
|
51 |
+
print(result)
|