from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def convert_units(value: float, from_unit: str, to_unit: str) -> str: """Converts between common units (length, weight, temperature). Useful for unit conversion tasks. Args: value: The numerical value to convert from_unit: The original unit (e.g., 'km', 'kg', 'C') to_unit: The target unit (e.g., 'miles', 'lb', 'F') """ conversions = { ('km', 'miles'): lambda x: x * 0.621371, ('miles', 'km'): lambda x: x / 0.621371, ('kg', 'lb'): lambda x: x * 2.20462, ('lb', 'kg'): lambda x: x / 2.20462, ('C', 'F'): lambda x: (x * 9/5) + 32, ('F', 'C'): lambda x: (x - 32) * 5/9 } try: key = (from_unit.strip().lower(), to_unit.strip().lower()) func = conversions[key] result = func(value) return f"{value} {from_unit} = {result:.2f} {to_unit}" except KeyError: return f"Unsupported conversion from {from_unit} to {to_unit}." except Exception as e: return f"An unexpected error occurred: {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, convert_units], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()