Spaces:
Build error
Build error
Commit
·
0a9270c
1
Parent(s):
ccde68c
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,11 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
# coding: utf-8
|
| 3 |
-
|
| 4 |
-
# In[ ]:
|
| 5 |
-
|
| 6 |
-
|
| 7 |
import streamlit as st
|
| 8 |
import nltk
|
| 9 |
-
from nltk.stem import WordNetLemmatizer
|
| 10 |
import pickle
|
| 11 |
import numpy as np
|
| 12 |
from tensorflow.keras.models import load_model
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
nltk.download('wordnet')
|
| 16 |
-
|
| 17 |
-
# Load saved model and other necessary files
|
| 18 |
model = load_model("chatbot_model.h5")
|
| 19 |
words = pickle.load(open('words.pkl', 'rb'))
|
| 20 |
classes = pickle.load(open('classes.pkl', 'rb'))
|
|
@@ -40,28 +31,24 @@ def bow(sentence, words, show_details=True):
|
|
| 40 |
|
| 41 |
# Streamlit app
|
| 42 |
def main():
|
| 43 |
-
st.title("Chatbot
|
| 44 |
-
st.write("Welcome to the
|
| 45 |
|
| 46 |
-
user_input = st.text_input("You:
|
| 47 |
-
if st.button("
|
| 48 |
if user_input.strip() == "":
|
| 49 |
-
st.write("Bot: Please enter
|
| 50 |
else:
|
| 51 |
p = bow(user_input, words)
|
| 52 |
res = model.predict(np.array([p]))[0]
|
| 53 |
ERROR_THRESHOLD = 0.25
|
| 54 |
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
|
| 55 |
results.sort(key=lambda x: x[1], reverse=True)
|
| 56 |
-
return_list = []
|
| 57 |
for r in results:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
break
|
| 63 |
-
st.write("Bot:", response)
|
| 64 |
|
| 65 |
if __name__ == "__main__":
|
| 66 |
main()
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import nltk
|
|
|
|
| 3 |
import pickle
|
| 4 |
import numpy as np
|
| 5 |
from tensorflow.keras.models import load_model
|
| 6 |
+
from nltk.stem import WordNetLemmatizer
|
| 7 |
|
| 8 |
+
# Load the pre-trained model and other data
|
|
|
|
|
|
|
|
|
|
| 9 |
model = load_model("chatbot_model.h5")
|
| 10 |
words = pickle.load(open('words.pkl', 'rb'))
|
| 11 |
classes = pickle.load(open('classes.pkl', 'rb'))
|
|
|
|
| 31 |
|
| 32 |
# Streamlit app
|
| 33 |
def main():
|
| 34 |
+
st.title("Healthcare Chatbot")
|
| 35 |
+
st.write("Welcome to the Healthcare Chatbot! Enter your symptoms below.")
|
| 36 |
|
| 37 |
+
user_input = st.text_input("You:")
|
| 38 |
+
if st.button("Predict"):
|
| 39 |
if user_input.strip() == "":
|
| 40 |
+
st.write("Bot: Please enter your symptoms.")
|
| 41 |
else:
|
| 42 |
p = bow(user_input, words)
|
| 43 |
res = model.predict(np.array([p]))[0]
|
| 44 |
ERROR_THRESHOLD = 0.25
|
| 45 |
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
|
| 46 |
results.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
| 47 |
for r in results:
|
| 48 |
+
return_class = classes[r[0]]
|
| 49 |
+
break
|
| 50 |
+
|
| 51 |
+
st.write("Bot: Based on your symptoms, you might have:", return_class)
|
|
|
|
|
|
|
| 52 |
|
| 53 |
if __name__ == "__main__":
|
| 54 |
main()
|
|
|