Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,48 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
import
|
| 5 |
-
from diffusers import StableDiffusionPipeline
|
| 6 |
-
|
| 7 |
-
# Load the Stable Diffusion model for text-based garment generation
|
| 8 |
-
model_id = "runwayml/stable-diffusion-v1-5"
|
| 9 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 10 |
-
pipe = pipe.to("cuda") # Use GPU for faster inference
|
| 11 |
-
|
| 12 |
-
MAX_SEED = 999999
|
| 13 |
-
|
| 14 |
-
def generate_garment(person_img, cloth_description, seed, randomize_seed):
|
| 15 |
-
if person_img is None or cloth_description is None or cloth_description.strip() == "":
|
| 16 |
-
return None, None, "Invalid input"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if randomize_seed:
|
| 19 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
garment_img = pipe(cloth_description).images[0]
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
|
|
|
| 28 |
return result_img, seed, "Success"
|
| 29 |
|
| 30 |
-
|
| 31 |
-
person_img = np.array(person_img)
|
| 32 |
-
garment_img = np.array(garment_img.resize((person_img.shape[1], person_img.shape[0])))
|
| 33 |
|
| 34 |
-
|
| 35 |
-
# Further improvement may require segmentation/masking
|
| 36 |
-
result_img = np.where(garment_img[:, :, 3:] > 0, garment_img[:, :, :3], person_img)
|
| 37 |
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
css = """
|
| 41 |
#col-left {
|
|
@@ -54,32 +61,90 @@ css = """
|
|
| 54 |
margin: 0 auto;
|
| 55 |
max-width: 1100px;
|
| 56 |
}
|
|
|
|
|
|
|
|
|
|
| 57 |
"""
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
with gr.Blocks(css=css) as Tryon:
|
| 60 |
-
gr.HTML("
|
| 61 |
-
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column(elem_id="col-left"):
|
| 64 |
-
gr.HTML("
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
with gr.Column(elem_id="col-mid"):
|
| 68 |
-
gr.HTML("
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Column(elem_id="col-right"):
|
| 72 |
-
gr.HTML("
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
Tryon.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
def tryon(person_img, garment_prompt, seed, randomize_seed):
|
| 9 |
+
post_start_time = time.time()
|
| 10 |
+
|
| 11 |
+
if person_img is None or garment_prompt.strip() == "":
|
| 12 |
+
return None, None, "Empty image or prompt"
|
| 13 |
+
|
| 14 |
if randomize_seed:
|
| 15 |
seed = random.randint(0, MAX_SEED)
|
| 16 |
+
|
| 17 |
+
# Create a copy of the person image to overlay text
|
| 18 |
+
result_img = person_img.copy()
|
| 19 |
+
|
| 20 |
+
# Convert the image to OpenCV format (if needed)
|
| 21 |
+
if len(result_img.shape) == 2: # Convert grayscale to RGB
|
| 22 |
+
result_img = cv2.cvtColor(result_img, cv2.COLOR_GRAY2RGB)
|
| 23 |
+
|
| 24 |
+
# Set text position and properties
|
| 25 |
+
text_position = (10, 30)
|
| 26 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 27 |
+
font_scale = 1
|
| 28 |
+
font_color = (0, 255, 0) # Green color for the text
|
| 29 |
+
thickness = 2
|
| 30 |
|
| 31 |
+
# Overlay the garment description text on the image
|
| 32 |
+
cv2.putText(result_img, f'Garment: {garment_prompt}', text_position, font, font_scale, font_color, thickness, cv2.LINE_AA)
|
|
|
|
| 33 |
|
| 34 |
+
post_end_time = time.time()
|
| 35 |
+
print(f"post time used: {post_end_time - post_start_time}")
|
| 36 |
|
| 37 |
+
# Return the resulting image, used seed, and success message
|
| 38 |
return result_img, seed, "Success"
|
| 39 |
|
| 40 |
+
MAX_SEED = 999999
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
example_path = os.path.join(os.path.dirname(__file__), 'assets')
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
human_list = os.listdir(os.path.join(example_path, "human"))
|
| 45 |
+
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
|
| 46 |
|
| 47 |
css = """
|
| 48 |
#col-left {
|
|
|
|
| 61 |
margin: 0 auto;
|
| 62 |
max-width: 1100px;
|
| 63 |
}
|
| 64 |
+
#button {
|
| 65 |
+
color: blue;
|
| 66 |
+
}
|
| 67 |
"""
|
| 68 |
|
| 69 |
+
def load_description(fp):
|
| 70 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
| 71 |
+
content = f.read()
|
| 72 |
+
return content
|
| 73 |
+
|
| 74 |
+
|
| 75 |
with gr.Blocks(css=css) as Tryon:
|
| 76 |
+
gr.HTML(load_description("assets/title.md"))
|
|
|
|
| 77 |
with gr.Row():
|
| 78 |
with gr.Column(elem_id="col-left"):
|
| 79 |
+
gr.HTML("""
|
| 80 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
| 81 |
+
<div>
|
| 82 |
+
Step 1. Upload a person image ⬇️
|
| 83 |
+
</div>
|
| 84 |
+
</div>
|
| 85 |
+
""")
|
| 86 |
with gr.Column(elem_id="col-mid"):
|
| 87 |
+
gr.HTML("""
|
| 88 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
| 89 |
+
<div>
|
| 90 |
+
Step 2. Enter a text prompt for the garment ⬇️
|
| 91 |
+
</div>
|
| 92 |
+
</div>
|
| 93 |
+
""")
|
| 94 |
with gr.Column(elem_id="col-right"):
|
| 95 |
+
gr.HTML("""
|
| 96 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
| 97 |
+
<div>
|
| 98 |
+
Step 3. Press “Run” to get try-on results
|
| 99 |
+
</div>
|
| 100 |
+
</div>
|
| 101 |
+
""")
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column(elem_id="col-left"):
|
| 104 |
+
imgs = gr.Image(label="Person image", sources='upload', type="numpy")
|
| 105 |
+
example = gr.Examples(
|
| 106 |
+
inputs=imgs,
|
| 107 |
+
examples_per_page=12,
|
| 108 |
+
examples=human_list_path
|
| 109 |
+
)
|
| 110 |
+
with gr.Column(elem_id="col-mid"):
|
| 111 |
+
garment_prompt = gr.Textbox(label="Garment text prompt", placeholder="Describe the garment...")
|
| 112 |
+
with gr.Column(elem_id="col-right"):
|
| 113 |
+
image_out = gr.Image(label="Result", show_share_button=False)
|
| 114 |
+
with gr.Row():
|
| 115 |
+
seed = gr.Slider(
|
| 116 |
+
label="Seed",
|
| 117 |
+
minimum=0,
|
| 118 |
+
maximum=MAX_SEED,
|
| 119 |
+
step=1,
|
| 120 |
+
value=0,
|
| 121 |
+
)
|
| 122 |
+
randomize_seed = gr.Checkbox(label="Random seed", value=True)
|
| 123 |
+
with gr.Row():
|
| 124 |
+
seed_used = gr.Number(label="Seed used")
|
| 125 |
+
result_info = gr.Text(label="Response")
|
| 126 |
+
test_button = gr.Button(value="Run", elem_id="button")
|
| 127 |
+
|
| 128 |
+
test_button.click(fn=tryon, inputs=[imgs, garment_prompt, seed, randomize_seed], outputs=[image_out, seed_used, result_info], concurrency_limit=40)
|
| 129 |
+
|
| 130 |
+
with gr.Column(elem_id="col-showcase"):
|
| 131 |
+
gr.HTML("""
|
| 132 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
| 133 |
+
<div> </div>
|
| 134 |
+
<br>
|
| 135 |
+
<div>
|
| 136 |
+
Virtual try-on examples in pairs of person and garment images
|
| 137 |
+
</div>
|
| 138 |
+
</div>
|
| 139 |
+
""")
|
| 140 |
+
show_case = gr.Examples(
|
| 141 |
+
examples=[
|
| 142 |
+
["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
|
| 143 |
+
["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
|
| 144 |
+
["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
|
| 145 |
+
],
|
| 146 |
+
inputs=[imgs, garment_prompt, image_out],
|
| 147 |
+
label=None
|
| 148 |
+
)
|
| 149 |
|
| 150 |
Tryon.launch()
|