Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import dataclasses | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, List, NewType, Optional, Tuple | |
import transformers | |
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser | |
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
DataClassType = NewType("DataClassType", Any) | |
class H4ArgumentParser(HfArgumentParser): | |
def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]] = None) -> List[dataclass]: | |
""" | |
Parse a YAML file and overwrite the default/loaded values with the values provided to the command line. | |
Args: | |
yaml_arg (`str`): | |
The path to the config file used | |
other_args (`List[str]`, *optional`): | |
A list of strings to parse as command line arguments, e.g. ['--arg=val', '--arg2=val2']. | |
Returns: | |
[`List[dataclass]`]: a list of dataclasses with the values from the YAML file and the command line | |
""" | |
arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg)) | |
outputs = [] | |
# strip other args list into dict of key-value pairs | |
other_args = {arg.split("=")[0].strip("-"): arg.split("=")[1] for arg in other_args} | |
used_args = {} | |
# overwrite the default/loaded value with the value provided to the command line | |
# adapted from https://github.com/huggingface/transformers/blob/d0b5002378daabf62769159add3e7d66d3f83c3b/src/transformers/hf_argparser.py#L327 | |
for data_yaml, data_class in zip(arg_list, self.dataclass_types): | |
keys = {f.name for f in dataclasses.fields(data_yaml) if f.init} | |
inputs = {k: v for k, v in vars(data_yaml).items() if k in keys} | |
for arg, val in other_args.items(): | |
# add only if in keys | |
if arg in keys: | |
base_type = data_yaml.__dataclass_fields__[arg].type | |
inputs[arg] = val | |
# cast type for ints, floats (default to strings) | |
if base_type in [int, float]: | |
inputs[arg] = base_type(val) | |
if base_type == List[str]: | |
inputs[arg] = [str(v) for v in val.split(",")] | |
# bool of a non-empty string is True, so we manually check for bools | |
if base_type == bool: | |
if val in ["true", "True"]: | |
inputs[arg] = True | |
else: | |
inputs[arg] = False | |
# add to used-args so we can check if double add | |
if arg not in used_args: | |
used_args[arg] = val | |
else: | |
raise ValueError(f"Duplicate argument provided: {arg}, may cause unexpected behavior") | |
obj = data_class(**inputs) | |
outputs.append(obj) | |
return outputs | |
def parse(self) -> DataClassType | Tuple[DataClassType]: | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): | |
# If we pass only one argument to the script and it's the path to a YAML file, | |
# let's parse it to get our arguments. | |
output = self.parse_yaml_file(os.path.abspath(sys.argv[1])) | |
# parse command line args and yaml file | |
elif len(sys.argv) > 2 and sys.argv[1].endswith(".yaml"): | |
output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:]) | |
# parse command line args only | |
else: | |
output = self.parse_args_into_dataclasses() | |
if len(output) == 1: | |
output = output[0] | |
return output | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune. | |
""" | |
base_model_revision: Optional[str] = field( | |
default=None, | |
metadata={"help": ("The base model checkpoint for weights initialization with PEFT adatpers.")}, | |
) | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." | |
) | |
}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
model_code_revision: str = field(default=None, metadata={"help": "The branch of the IFT model"}) | |
torch_dtype: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " | |
"dtype will be automatically derived from the model's weights." | |
), | |
"choices": ["auto", "bfloat16", "float16", "float32"], | |
}, | |
) | |
trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."}) | |
use_flash_attention_2: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to use flash attention 2. You must install this manually by running `pip install flash-attn --no-build-isolation`" | |
) | |
}, | |
) | |
use_peft: bool = field( | |
default=False, | |
metadata={"help": ("Whether to use PEFT or not for training.")}, | |
) | |
lora_r: Optional[int] = field( | |
default=16, | |
metadata={"help": ("LoRA R value.")}, | |
) | |
lora_alpha: Optional[int] = field( | |
default=32, | |
metadata={"help": ("LoRA alpha.")}, | |
) | |
lora_dropout: Optional[float] = field( | |
default=0.05, | |
metadata={"help": ("LoRA dropout.")}, | |
) | |
lora_target_modules: Optional[List[str]] = field( | |
default=None, | |
metadata={"help": ("LoRA target modules.")}, | |
) | |
lora_modules_to_save: Optional[List[str]] = field( | |
default=None, | |
metadata={"help": ("Model layers to unfreeze & train")}, | |
) | |
load_in_8bit: bool = field(default=False, metadata={"help": "use 8 bit precision"}) | |
load_in_4bit: bool = field(default=False, metadata={"help": "use 4 bit precision"}) | |
bnb_4bit_quant_type: Optional[str] = field( | |
default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"} | |
) | |
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"}) | |
def __post_init__(self): | |
if self.load_in_8bit and self.load_in_4bit: | |
raise ValueError("You can't use 8 bit and 4 bit precision at the same time") | |
class DataArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
chat_template: Optional[str] = field(default=None, metadata={"help": "The chat template to use."}) | |
dataset_mixer: Optional[Dict[str, float]] = field( | |
default=None, | |
metadata={"help": ("Datasets and their proportions to be used for training ift/rl.")}, | |
) | |
dataset_splits: Optional[List[str]] = field( | |
default_factory=lambda: ["train", "test"], | |
metadata={"help": ("List of train test splits to use in the dataset")}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
truncation_side: Optional[str] = field( | |
default=None, metadata={"help": "Truncation side to use for the tokenizer."} | |
) | |
class SFTConfig(transformers.TrainingArguments): | |
""" | |
Arguments related to the training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments | |
""" | |
max_seq_length: Optional[int] = field( | |
default=None, | |
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, | |
) | |
logging_first_step: bool = field( | |
default=True, | |
metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, | |
) | |
optim: Optional[str] = field(default="adamw_torch") | |
class DPOConfig(transformers.TrainingArguments): | |
""" | |
Arguments related to the DPO training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments | |
""" | |
beta: Optional[float] = field( | |
default=0.1, | |
metadata={"help": "The beta factor in DPO loss. Higher beta means less divergence from the initial policy."}, | |
) | |
hub_model_revision: Optional[str] = field( | |
default="main", | |
metadata={"help": ("The Hub model branch to push the model to.")}, | |
) | |
logging_first_step: bool = field( | |
default=True, | |
metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, | |
) | |
max_prompt_length: Optional[int] = field( | |
default=None, | |
metadata={"help": ("For DPO, the maximum length of the prompt to use for conditioning the model.")}, | |
) | |
max_length: Optional[int] = field( | |
default=None, | |
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, | |
) | |
optim: Optional[str] = field(default="rmsprop") | |
remove_unused_columns: bool = field(default=False) | |