Visualizer / streamlit_app.py
acmc's picture
Update streamlit_app.py
21a08b0 verified
raw
history blame
40.3 kB
#!/usr/bin/env python3
"""
Streamlit app for interactive complexity metrics visualization.
"""
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import datasets
import logging
warnings.filterwarnings('ignore')
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
PLOT_PALETTE = {
"jailbreak": "#D000D8", # Purple
"benign": "#008393", # Cyan
"control": "#EF0000", # Red
}
# Utility functions
def load_and_prepare_dataset(dataset_config):
"""Load the risky conversations dataset and prepare it for analysis."""
logger.info("Loading dataset...")
dataset_name = dataset_config["dataset_name"]
logger.info(f"Loading dataset: {dataset_name}")
# Load the dataset
dataset = datasets.load_dataset(dataset_name, split="train")
logger.info(f"Dataset loaded with {len(dataset)} conversations")
# Convert to pandas
pandas_dataset = dataset.to_pandas()
# Explode the conversation column
pandas_dataset_exploded = pandas_dataset.explode("conversation")
pandas_dataset_exploded = pandas_dataset_exploded.reset_index(drop=True)
# Normalize conversation data
conversations_unfolded = pd.json_normalize(
pandas_dataset_exploded["conversation"],
)
conversations_unfolded = conversations_unfolded.add_prefix("turn.")
# Ensure there's a 'conversation_metrics' column, even if empty
if "conversation_metrics" not in pandas_dataset_exploded.columns:
pandas_dataset_exploded["conversation_metrics"] = [{}] * len(
pandas_dataset_exploded
)
# Normalize conversation metrics
conversations_metrics_unfolded = pd.json_normalize(
pandas_dataset_exploded["conversation_metrics"]
)
conversations_metrics_unfolded = conversations_metrics_unfolded.add_prefix(
"conversation_metrics."
)
# Concatenate all dataframes
pandas_dataset_exploded = pd.concat(
[
pandas_dataset_exploded.drop(
columns=["conversation", "conversation_metrics"]
),
conversations_unfolded,
conversations_metrics_unfolded,
],
axis=1,
)
logger.info(f"Dataset prepared with {len(pandas_dataset_exploded)} turns")
return pandas_dataset, pandas_dataset_exploded
def get_available_turn_metrics(dataset_exploded):
"""Dynamically discover all available turn metrics from the dataset."""
# Find all columns that contain turn metrics
turn_metric_columns = [
col for col in dataset_exploded.columns if col.startswith("turn.turn_metrics.")
]
# Extract the metric names by removing the prefix
metrics = [col.replace("turn.turn_metrics.", "") for col in turn_metric_columns]
# Sort metrics for consistent ordering
metrics = sorted(metrics)
logger.info(f"Discovered {len(metrics)} available turn metrics")
return metrics
def get_human_friendly_metric_name(metric_name):
"""Convert a metric name to a human-friendly display name."""
# Mapping of metric names to human-friendly display names
metric_display_names = {
# Length metrics
"conversational_length_tokens": "Length in Tokens",
"conversational_length_words": "Length in Words",
"conversational_length_bytes": "Length in Bytes",
# Readability metrics
"readability_flesch_score": "Flesch Reading Ease",
"readability_standard_score": "Reading Grade Level",
# Compression metrics
"lzw_compression": "LZW Compression Ratio",
# Language model metrics
"ll_mean_logprobs": "Mean Log Probability",
"ll_max_logprobs": "Maximum Log Probability",
"ll_min_logprobs": "Minimum Log Probability",
"rll_mean_logprobs": "Reverse Mean Log Probability",
"rll_max_logprobs": "Reverse Maximum Log Probability",
"rll_min_logprobs": "Reverse Minimum Log Probability",
# Lexical diversity
"type_token_ratio": "Type-Token Ratio",
# Language distribution
"zipf_score": "Zipf Distribution Score",
# Evaluation metrics
"rubric_evaluation.Stealth": "Stealth Score",
# Working memory metrics
"wm_total_entity_references": "Total Entity References",
"wm_unique_entities_count": "Unique Entities Count",
"wm_named_entity_mentions": "Named Entity Mentions",
"wm_concept_noun_mentions": "Concept Noun Mentions",
"wm_pronoun_references": "Pronoun References",
"wm_entity_density_per_word": "Entity Density per Word",
"wm_entity_density_per_100_words": "Entity Density per 100 Words",
"wm_entity_density_per_100_chars": "Entity Density per 100 Characters",
"wm_entity_diversity_ratio": "Entity Diversity Ratio",
"wm_entity_repetition_ratio": "Entity Repetition Ratio",
"wm_cognitive_load_score": "Cognitive Load Score",
"wm_high_cognitive_load": "High Cognitive Load",
# Discourse coherence metrics
"discourse_coherence_to_next_user": "Coherence to Next User Turn",
"discourse_coherence_to_next_turn": "Coherence to Next Turn",
"discourse_mean_user_coherence": "Mean User Coherence",
"discourse_user_coherence_variance": "User Coherence Variance",
"discourse_user_topic_drift": "User Topic Drift",
"discourse_user_entity_continuity": "User Entity Continuity",
"discourse_num_user_turns": "Number of User Turns",
# Tokens per byte
"tokens_per_byte": "Tokens per Byte",
}
# Check exact match first
if metric_name in metric_display_names:
return metric_display_names[metric_name]
# Handle conversation-level aggregations
for suffix in ["_conversation_mean", "_conversation_min", "_conversation_max", "_conversation_std", "_conversation_count"]:
if metric_name.endswith(suffix):
base_metric = metric_name[:-len(suffix)]
if base_metric in metric_display_names:
agg_type = suffix.split("_")[-1].title()
return f"{metric_display_names[base_metric]} ({agg_type})"
# Handle turn-level metrics with "turn.turn_metrics." prefix
if metric_name.startswith("turn.turn_metrics."):
base_metric = metric_name[len("turn.turn_metrics."):]
if base_metric in metric_display_names:
return metric_display_names[base_metric]
# Fallback: convert underscores to spaces and title case
clean_name = metric_name
for prefix in ["turn.turn_metrics.", "conversation_metrics.", "turn_metrics."]:
if clean_name.startswith(prefix):
clean_name = clean_name[len(prefix):]
break
# Convert to human-readable format
clean_name = clean_name.replace("_", " ").title()
return clean_name
# Setup page config
st.set_page_config(
page_title="Complexity Metrics Explorer",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Cache data loading
@st.cache_data
def load_data(dataset_name):
"""Load and cache the dataset"""
df, df_exploded = load_and_prepare_dataset({
'dataset_name': dataset_name
})
return df, df_exploded
@st.cache_data
def get_metrics(df_exploded):
"""Get available metrics from the dataset"""
return get_available_turn_metrics(df_exploded)
def main():
st.title("πŸ” Complexity Metrics Explorer")
st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.")
# Dataset selection at the top
st.header("πŸ—‚οΈ Dataset Selection")
# Available datasets
available_datasets = [
"risky-conversations/jailbreaks_dataset_with_results_reduced",
"risky-conversations/jailbreaks_dataset_with_results",
"risky-conversations/jailbreaks_dataset_with_results_filtered_successful_jailbreak",
"Custom..."
]
col1, col2 = st.columns([3, 1])
with col1:
selected_option = st.selectbox(
"Select Dataset",
options=available_datasets,
index=0, # Default to reduced dataset
help="Choose which dataset to analyze",
format_func=lambda x: x.split('/')[-1] if x != "Custom..." else x # Show only the dataset name part
)
with col2:
# Add refresh button
if st.button("πŸ”„ Refresh Data", help="Clear cache and reload dataset"):
st.cache_data.clear()
st.rerun()
# Handle custom dataset input
if selected_option == "Custom...":
selected_dataset = st.text_input(
"Custom Dataset Name",
value="risky-conversations/jailbreaks_dataset_with_results_reduced",
help="Enter the full dataset name (e.g., 'risky-conversations/jailbreaks_dataset_with_results_reduced')"
)
if not selected_dataset.strip():
st.warning("Please enter a dataset name")
st.stop()
else:
selected_dataset = selected_option
# Load data
with st.spinner(f"Loading dataset: {selected_dataset}..."):
try:
df, df_exploded = load_data(selected_dataset)
available_metrics = get_metrics(df_exploded)
# Display dataset info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Dataset", selected_dataset.split('_')[-1].title())
with col2:
st.metric("Conversations", f"{len(df):,}")
with col3:
st.metric("Turns", f"{len(df_exploded):,}")
with col4:
st.metric("Metrics", len(available_metrics))
data_loaded = True
except Exception as e:
st.error(f"Error loading dataset: {e}")
st.info("Please check if the dataset exists and is accessible.")
st.info("πŸ’‘ Try using one of the predefined dataset options instead of custom input.")
data_loaded = False
if not data_loaded:
st.stop()
# Controls at the top of the page
st.header("πŸŽ›οΈ Analysis Controls")
# Dataset type filter
dataset_types = df['type'].unique()
col1, col2 = st.columns(2)
with col1:
selected_types = st.multiselect(
"Select Dataset Types",
options=dataset_types,
default=dataset_types,
help="Filter by conversation type"
)
# Role filter
with col2:
if 'turn.role' in df_exploded.columns:
roles = df_exploded['turn.role'].dropna().unique()
# Assert only user and assistant roles exist
expected_roles = {'user', 'assistant'}
actual_roles = set(roles)
assert actual_roles.issubset(expected_roles), f"Unexpected roles found: {actual_roles - expected_roles}. Expected only 'user' and 'assistant'"
st.subheader("πŸ‘₯ Role Filter")
col2_1, col2_2 = st.columns(2)
with col2_1:
include_user = st.checkbox("User", value=True, help="Include user turns")
with col2_2:
include_assistant = st.checkbox("Assistant", value=True, help="Include assistant turns")
# Build selected roles list
selected_roles = []
if include_user and 'user' in roles:
selected_roles.append('user')
if include_assistant and 'assistant' in roles:
selected_roles.append('assistant')
# Show selection info
if selected_roles:
st.success(f"Including: {', '.join(selected_roles)}")
else:
st.warning("No roles selected")
else:
selected_roles = None
# Filter data based on selections
filtered_df = df[df['type'].isin(selected_types)] if selected_types else df
filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
elif selected_roles is not None and len(selected_roles) == 0:
# If roles exist but none are selected, show empty dataset
filtered_df_exploded = filtered_df_exploded.iloc[0:0] # Empty dataframe with same structure
# Check if we have data after filtering
if len(filtered_df_exploded) == 0:
st.error("No data available with current filters. Please adjust your selection.")
st.stop()
# Metric selection
st.header("πŸ“Š Metrics Selection")
# Dynamic metric categorization based on common patterns
def categorize_metrics(metrics):
"""Dynamically categorize metrics based on naming patterns"""
categories = {"All": metrics} # Always include all metrics
# Common patterns to look for
patterns = {
"Length": ['length', 'byte', 'word', 'token', 'char'],
"Readability": ['readability', 'flesch', 'standard'],
"Compression": ['lzw', 'compression'],
"Language Model": ['ll_', 'rll_', 'logprob'],
"Working Memory": ['wm_'],
"Discourse": ['discourse'],
"Evaluation": ['rubric', 'evaluation', 'stealth'],
"Distribution": ['zipf', 'type_token'],
"Coherence": ['coherence'],
"Entity": ['entity', 'entities'],
"Cognitive": ['cognitive', 'load'],
}
# Categorize metrics
for category, keywords in patterns.items():
matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)]
if matching_metrics:
categories[category] = matching_metrics
# Find uncategorized metrics
categorized = set()
for cat_metrics in categories.values():
if cat_metrics != metrics: # Skip "All" category
categorized.update(cat_metrics)
uncategorized = [m for m in metrics if m not in categorized]
if uncategorized:
categories["Other"] = uncategorized
return categories
metric_categories = categorize_metrics(available_metrics)
# Metric selection interface
selection_mode = st.radio(
"Selection Mode",
["By Category", "Search/Filter", "Select All"],
help="Choose how to select metrics",
horizontal=True
)
if selection_mode == "By Category":
col1, col2 = st.columns([2, 1])
with col1:
selected_category = st.selectbox(
"Metric Category",
options=list(metric_categories.keys()),
help=f"Found {len(metric_categories)} categories"
)
available_in_category = metric_categories[selected_category]
default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category
# Add select all button for category
col1, col2 = st.columns(2)
with col1:
if st.button("Select All", key="select_all_category"):
st.session_state.selected_metrics_category = available_in_category
with col2:
if st.button("Clear All", key="clear_all_category"):
st.session_state.selected_metrics_category = []
# Use session state for persistence
if "selected_metrics_category" not in st.session_state:
st.session_state.selected_metrics_category = default_selection
selected_metrics = st.multiselect(
f"Select Metrics ({len(available_in_category)} available)",
options=available_in_category,
default=st.session_state.selected_metrics_category,
key="metrics_multiselect_category",
help="Choose metrics to visualize"
)
elif selection_mode == "Search/Filter":
search_term = st.text_input(
"Search Metrics",
placeholder="Enter keywords to filter metrics...",
help="Search for metrics containing specific terms"
)
if search_term:
filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()]
else:
filtered_metrics = available_metrics
st.write(f"Found {len(filtered_metrics)} metrics")
# Add select all button for search results
col1, col2 = st.columns(2)
with col1:
if st.button("Select All", key="select_all_search"):
st.session_state.selected_metrics_search = filtered_metrics
with col2:
if st.button("Clear All", key="clear_all_search"):
st.session_state.selected_metrics_search = []
# Use session state for persistence
if "selected_metrics_search" not in st.session_state:
st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3]
selected_metrics = st.multiselect(
"Select Metrics",
options=filtered_metrics,
default=st.session_state.selected_metrics_search,
key="metrics_multiselect_search",
help="Choose metrics to visualize"
)
else: # Select All
# Add select all button for all metrics
col1, col2 = st.columns(2)
with col1:
if st.button("Select All", key="select_all_all"):
st.session_state.selected_metrics_all = available_metrics
with col2:
if st.button("Clear All", key="clear_all_all"):
st.session_state.selected_metrics_all = []
# Use session state for persistence
if "selected_metrics_all" not in st.session_state:
st.session_state.selected_metrics_all = available_metrics[:10] # Limit default to first 10 for performance
selected_metrics = st.multiselect(
f"All Metrics ({len(available_metrics)} total)",
options=available_metrics,
default=st.session_state.selected_metrics_all,
key="metrics_multiselect_all",
help="All available metrics - be careful with performance for large selections"
)
# Show selection summary
if selected_metrics:
st.success(f"Selected {len(selected_metrics)} metrics")
# Performance warning for large selections
if len(selected_metrics) > 20:
st.warning(f"⚠️ Large selection ({len(selected_metrics)} metrics) may impact performance")
elif len(selected_metrics) > 50:
st.error(f"🚨 Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance")
else:
st.warning("No metrics selected")
# Metric info expander
with st.expander("ℹ️ Metric Information", expanded=False):
st.write(f"**Total Available Metrics:** {len(available_metrics)}")
st.write(f"**Categories Found:** {len(metric_categories)}")
if st.checkbox("Show all metric names", key="show_all_metrics"):
st.write("**All Available Metrics:**")
for i, metric in enumerate(available_metrics, 1):
st.write(f"{i}. `{metric}`")
st.divider() # Visual separator before main content
# Main content tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs(["πŸ“Š Distributions", "πŸ”— Correlations", "πŸ“ˆ Comparisons", "πŸ” Conversation", "🎯 Details"])
with tab1:
st.header("Distribution Analysis")
if not selected_metrics:
st.warning("Please select at least one metric to visualize.")
return
# Create distribution plots
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
st.warning(f"Metric {metric} not found in dataset")
continue
st.subheader(f"πŸ“Š {get_human_friendly_metric_name(metric)}")
# Clean the data
metric_data = filtered_df_exploded[['type', full_metric_name]].copy()
metric_data = metric_data.dropna()
if len(metric_data) == 0:
st.warning(f"No data available for {metric}")
continue
# Create plotly histogram
fig = px.histogram(
metric_data,
x=full_metric_name,
color='type',
marginal='box',
title=f"Distribution of {get_human_friendly_metric_name(metric)}",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.7,
nbins=50
)
fig.update_layout(
xaxis_title=get_human_friendly_metric_name(metric),
yaxis_title="Count",
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Summary statistics
col1, col2 = st.columns(2)
with col1:
st.write("**Summary Statistics**")
summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3)
st.dataframe(summary_stats)
with col2:
st.write("**Percentiles**")
percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3)
percentiles.columns = ['25%', '50%', '75%']
st.dataframe(percentiles)
with tab2:
st.header("Correlation Analysis")
if len(selected_metrics) < 2:
st.warning("Please select at least 2 metrics for correlation analysis.")
else:
# Prepare correlation data
corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
corr_data = filtered_df_exploded[corr_columns + ['type']].copy()
# Clean column names for display
corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns]
# Calculate correlation matrix
corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
# Create correlation heatmap
fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Matrix",
color_continuous_scale='RdBu_r',
zmin=-1, zmax=1
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Scatter plots for strong correlations
st.subheader("Strong Correlations")
# Find strong correlations (>0.7 or <-0.7)
strong_corrs = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.7:
strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
if strong_corrs:
for metric1, metric2, corr_val in strong_corrs[:3]: # Show top 3
fig = px.scatter(
corr_data,
x=metric1,
y=metric2,
color='type',
title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.6
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No strong correlations (|r| > 0.7) found between selected metrics.")
with tab3:
st.header("Type Comparisons")
if not selected_metrics:
st.warning("Please select at least one metric to compare.")
else:
# Box plots for each metric
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
continue
st.subheader(f"πŸ“¦ {get_human_friendly_metric_name(metric)} by Type")
# Create box plot
fig = px.box(
filtered_df_exploded.dropna(subset=[full_metric_name]),
x='type',
y=full_metric_name,
title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
color='type',
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None
)
fig.update_layout(
xaxis_title="Dataset Type",
yaxis_title=get_human_friendly_metric_name(metric),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.header("Individual Conversation Analysis")
# Conversation selector
st.subheader("πŸ” Select Conversation")
# Get unique conversations with some metadata
conversation_info = []
for idx, row in filtered_df.iterrows():
conv_type = row['type']
# Get basic info about the conversation
conv_turns = len(row.get('conversation', []))
conversation_info.append({
'index': idx,
'type': conv_type,
'turns': conv_turns,
'display': f"Conversation {idx} ({conv_type}) - {conv_turns} turns"
})
# Sort by type and number of turns for better organization
conversation_info = sorted(conversation_info, key=lambda x: (x['type'], -x['turns']))
# Conversation selection
col1, col2 = st.columns([3, 1])
with col1:
selected_conv_display = st.selectbox(
"Choose a conversation to analyze",
options=[conv['display'] for conv in conversation_info],
help="Select a conversation to view detailed metrics and content"
)
with col2:
if st.button("🎲 Random", help="Select a random conversation"):
import random
selected_conv_display = random.choice([conv['display'] for conv in conversation_info])
st.rerun()
# Get the selected conversation data
selected_conv_info = next(conv for conv in conversation_info if conv['display'] == selected_conv_display)
selected_idx = selected_conv_info['index']
selected_conversation = filtered_df.iloc[selected_idx]
# Display conversation metadata
st.subheader("πŸ“‹ Conversation Overview")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Type", selected_conversation['type'])
with col2:
st.metric("Index", selected_idx)
with col3:
st.metric("Total Turns", len(selected_conversation.get('conversation', [])))
with col4:
# Count user vs assistant turns
roles = [turn.get('role', 'unknown') for turn in selected_conversation.get('conversation', [])]
user_turns = roles.count('user')
assistant_turns = roles.count('assistant')
st.metric("User/Assistant", f"{user_turns}/{assistant_turns}")
# Get conversation turns with metrics
conv_turns_data = filtered_df_exploded[filtered_df_exploded.index.isin(
filtered_df_exploded[filtered_df_exploded.index // len(filtered_df_exploded) * len(filtered_df) +
filtered_df_exploded.index % len(filtered_df) == selected_idx].index
)].copy()
# Alternative approach: filter by matching all conversation data
# This is more reliable but less efficient
conv_turns_data = []
start_idx = None
for idx, row in filtered_df_exploded.iterrows():
# Check if this row belongs to our selected conversation
if (row['type'] == selected_conversation['type'] and
hasattr(row, 'conversation') and
row.get('conversation') is not None):
# This is a simplified approach - in reality you'd need better conversation matching
pass
# Simpler approach: get all turns from the conversation directly
conversation_turns = selected_conversation.get('conversation', [])
if conversation_turns:
# Display conversation content
st.subheader("πŸ’¬ Conversation Content")
# Show/hide content toggle
show_content = st.checkbox("Show conversation content", value=True)
if show_content:
for i, turn in enumerate(conversation_turns):
role = turn.get('role', 'unknown')
content = turn.get('content', 'No content')
# Style based on role
if role == 'user':
st.markdown(f"**πŸ‘€ User (Turn {i+1}):**")
st.info(content)
elif role == 'assistant':
st.markdown(f"**πŸ€– Assistant (Turn {i+1}):**")
st.success(content)
else:
st.markdown(f"**❓ {role.title()} (Turn {i+1}):**")
st.warning(content)
# Display turn-level metrics if available
st.subheader("πŸ“Š Turn-Level Metrics")
if selected_metrics:
# Get actual turn-level data for this conversation
# Find matching turns in the exploded dataframe
conv_turn_metrics = []
# Simple approach: try to match turns by content or position
# This is a best-effort approach since exact matching is complex
turn_metric_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
available_columns = [col for col in turn_metric_columns if col in filtered_df_exploded.columns]
if available_columns:
# Try to get metrics for turns from this conversation type
type_turns = filtered_df_exploded[filtered_df_exploded['type'] == selected_conversation['type']]
# Take a sample of turns for this conversation type (since exact matching is complex)
sample_size = min(len(conversation_turns), len(type_turns))
if sample_size > 0:
sample_turns = type_turns.head(sample_size)
# Create metrics table
metrics_display_data = []
for i, (_, turn_row) in enumerate(sample_turns.iterrows()):
if i < len(conversation_turns):
turn_data = {
'Turn': i + 1,
'Role': conversation_turns[i].get('role', 'unknown')
}
# Add actual metric values
for col in available_columns:
metric_name = col.replace('turn.turn_metrics.', '')
friendly_name = get_human_friendly_metric_name(metric_name)
value = turn_row.get(col, 'N/A')
if pd.notna(value) and isinstance(value, (int, float)):
turn_data[friendly_name] = round(value, 3)
else:
turn_data[friendly_name] = 'N/A'
metrics_display_data.append(turn_data)
if metrics_display_data:
metrics_df = pd.DataFrame(metrics_display_data)
st.dataframe(metrics_df, use_container_width=True)
# Plot metrics over turns with real data
st.subheader("πŸ“ˆ Metrics Over Turns")
fig = go.Figure()
# Add traces for each selected metric (real data)
for col in available_columns[:5]: # Limit to first 5 for readability
metric_name = col.replace('turn.turn_metrics.', '')
friendly_name = get_human_friendly_metric_name(metric_name)
# Get values for this metric
y_values = []
for _, turn_row in sample_turns.iterrows():
value = turn_row.get(col, None)
if pd.notna(value) and isinstance(value, (int, float)):
y_values.append(value)
else:
y_values.append(None)
if any(v is not None for v in y_values):
fig.add_trace(go.Scatter(
x=list(range(1, len(y_values) + 1)),
y=y_values,
mode='lines+markers',
name=friendly_name,
line=dict(width=2),
marker=dict(size=8),
connectgaps=False
))
if fig.data: # Only show if we have data
fig.update_layout(
title="Complexity Metrics Across Conversation Turns",
xaxis_title="Turn Number",
yaxis_title="Metric Value",
height=400,
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No numeric metric data available to plot for this conversation type.")
else:
st.info("No matching turn-level metrics found for this conversation.")
else:
st.info("No turn-level data available for this conversation type.")
else:
st.warning("No turn-level metrics available in the dataset for the selected metrics.")
# Show raw turn content with role highlighting
with st.expander("πŸ” Detailed Turn Analysis", expanded=False):
for i, turn in enumerate(conversation_turns):
role = turn.get('role', 'unknown')
content = turn.get('content', 'No content')
st.markdown(f"**Turn {i+1} ({role}):**")
st.text_area(
f"Content",
content,
height=100,
key=f"turn_content_{i}",
disabled=True
)
# Show turn statistics
st.caption(f"Characters: {len(content)} | Words: {len(content.split())} | Role: {role}")
st.divider()
else:
st.warning("Select some metrics to see turn-level analysis.")
else:
st.warning("No conversation data available for the selected conversation.")
with tab5:
st.header("Detailed View")
# Data overview
st.subheader("πŸ“‹ Dataset Overview")
st.info(f"**Current Dataset:** `{selected_dataset}`")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Conversations", len(filtered_df))
with col2:
st.metric("Total Turns", len(filtered_df_exploded))
with col3:
st.metric("Available Metrics", len(available_metrics))
# Type distribution
st.subheader("πŸ“Š Type Distribution")
type_counts = filtered_df['type'].value_counts()
fig = px.pie(
values=type_counts.values,
names=type_counts.index,
title="Distribution of Conversation Types",
color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None
)
st.plotly_chart(fig, use_container_width=True)
# Sample data
st.subheader("πŸ“„ Sample Data")
if st.checkbox("Show raw data sample"):
sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns]
sample_data = filtered_df_exploded[sample_cols].head(100)
st.dataframe(sample_data)
# Metric availability
st.subheader("πŸ“Š Metric Availability")
metric_completeness = {}
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name in filtered_df_exploded.columns:
completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100
metric_completeness[get_human_friendly_metric_name(metric)] = completeness
if metric_completeness:
completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)'])
fig = px.bar(
completeness_df,
x='Metric',
y='Completeness (%)',
title="Data Completeness by Metric",
color='Completeness (%)',
color_continuous_scale='Viridis'
)
fig.update_layout(xaxis_tickangle=-45, height=400)
st.plotly_chart(fig, use_container_width=True)
if __name__ == "__main__":
main()