Spaces:
Sleeping
Sleeping
Create streamlit_app.py
Browse files- streamlit_app.py +521 -0
streamlit_app.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Streamlit app for interactive complexity metrics visualization.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import seaborn as sns
|
11 |
+
import plotly.express as px
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
from plotly.subplots import make_subplots
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
|
17 |
+
# Import visualization utilities
|
18 |
+
from visualization.utils import (
|
19 |
+
load_and_prepare_dataset,
|
20 |
+
get_available_turn_metrics,
|
21 |
+
get_human_friendly_metric_name,
|
22 |
+
clean_metric_values,
|
23 |
+
PLOT_PALETTE,
|
24 |
+
setup_plot_style
|
25 |
+
)
|
26 |
+
|
27 |
+
# Setup page config
|
28 |
+
st.set_page_config(
|
29 |
+
page_title="Complexity Metrics Explorer",
|
30 |
+
page_icon="π",
|
31 |
+
layout="wide",
|
32 |
+
initial_sidebar_state="expanded"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Cache data loading
|
36 |
+
@st.cache_data
|
37 |
+
def load_data(dataset_name):
|
38 |
+
"""Load and cache the dataset"""
|
39 |
+
df, df_exploded = load_and_prepare_dataset({
|
40 |
+
'dataset_name': dataset_name
|
41 |
+
})
|
42 |
+
return df, df_exploded
|
43 |
+
|
44 |
+
@st.cache_data
|
45 |
+
def get_metrics(df_exploded):
|
46 |
+
"""Get available metrics from the dataset"""
|
47 |
+
return get_available_turn_metrics(df_exploded)
|
48 |
+
|
49 |
+
def main():
|
50 |
+
st.title("π Complexity Metrics Explorer")
|
51 |
+
st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.")
|
52 |
+
|
53 |
+
# Dataset selection
|
54 |
+
st.sidebar.header("ποΈ Dataset Selection")
|
55 |
+
|
56 |
+
# Available datasets
|
57 |
+
available_datasets = [
|
58 |
+
"jailbreaks_dataset_with_results_reduced",
|
59 |
+
"jailbreaks_dataset_with_results",
|
60 |
+
"jailbreaks_dataset_with_results_filtered_successful_jailbreak",
|
61 |
+
"Custom..."
|
62 |
+
]
|
63 |
+
|
64 |
+
selected_option = st.sidebar.selectbox(
|
65 |
+
"Select Dataset",
|
66 |
+
options=available_datasets,
|
67 |
+
index=0, # Default to reduced dataset
|
68 |
+
help="Choose which dataset to analyze"
|
69 |
+
)
|
70 |
+
|
71 |
+
# Handle custom dataset input
|
72 |
+
if selected_option == "Custom...":
|
73 |
+
selected_dataset = st.sidebar.text_input(
|
74 |
+
"Custom Dataset Name",
|
75 |
+
value="jailbreaks_dataset_with_results_reduced",
|
76 |
+
help="Enter the full dataset name (e.g., 'jailbreaks_dataset_with_results_reduced')"
|
77 |
+
)
|
78 |
+
if not selected_dataset.strip():
|
79 |
+
st.sidebar.warning("Please enter a dataset name")
|
80 |
+
st.stop()
|
81 |
+
else:
|
82 |
+
selected_dataset = selected_option
|
83 |
+
|
84 |
+
# Add refresh button
|
85 |
+
if st.sidebar.button("π Refresh Data", help="Clear cache and reload dataset"):
|
86 |
+
st.cache_data.clear()
|
87 |
+
st.rerun()
|
88 |
+
|
89 |
+
# Load data
|
90 |
+
with st.spinner(f"Loading dataset: {selected_dataset}..."):
|
91 |
+
try:
|
92 |
+
df, df_exploded = load_data(selected_dataset)
|
93 |
+
available_metrics = get_metrics(df_exploded)
|
94 |
+
|
95 |
+
# Display dataset info
|
96 |
+
col1, col2, col3, col4 = st.columns(4)
|
97 |
+
with col1:
|
98 |
+
st.metric("Dataset", selected_dataset.split('_')[-1].title())
|
99 |
+
with col2:
|
100 |
+
st.metric("Conversations", f"{len(df):,}")
|
101 |
+
with col3:
|
102 |
+
st.metric("Turns", f"{len(df_exploded):,}")
|
103 |
+
with col4:
|
104 |
+
st.metric("Metrics", len(available_metrics))
|
105 |
+
|
106 |
+
data_loaded = True
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error loading dataset: {e}")
|
109 |
+
st.info("Please check if the dataset exists and is accessible.")
|
110 |
+
st.info("π‘ Try using one of the predefined dataset options instead of custom input.")
|
111 |
+
data_loaded = False
|
112 |
+
|
113 |
+
if not data_loaded:
|
114 |
+
st.stop()
|
115 |
+
|
116 |
+
# Sidebar controls
|
117 |
+
st.sidebar.header("ποΈ Controls")
|
118 |
+
|
119 |
+
# Dataset type filter
|
120 |
+
dataset_types = df['type'].unique()
|
121 |
+
selected_types = st.sidebar.multiselect(
|
122 |
+
"Select Dataset Types",
|
123 |
+
options=dataset_types,
|
124 |
+
default=dataset_types,
|
125 |
+
help="Filter by conversation type"
|
126 |
+
)
|
127 |
+
|
128 |
+
# Role filter
|
129 |
+
if 'turn.role' in df_exploded.columns:
|
130 |
+
roles = df_exploded['turn.role'].unique()
|
131 |
+
selected_roles = st.sidebar.multiselect(
|
132 |
+
"Select Roles",
|
133 |
+
options=roles,
|
134 |
+
default=roles,
|
135 |
+
help="Filter by turn role"
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
selected_roles = None
|
139 |
+
|
140 |
+
# Metric selection
|
141 |
+
st.sidebar.header("π Metrics")
|
142 |
+
|
143 |
+
# Dynamic metric categorization based on common patterns
|
144 |
+
def categorize_metrics(metrics):
|
145 |
+
"""Dynamically categorize metrics based on naming patterns"""
|
146 |
+
categories = {"All": metrics} # Always include all metrics
|
147 |
+
|
148 |
+
# Common patterns to look for
|
149 |
+
patterns = {
|
150 |
+
"Length": ['length', 'byte', 'word', 'token', 'char'],
|
151 |
+
"Readability": ['readability', 'flesch', 'standard'],
|
152 |
+
"Compression": ['lzw', 'compression'],
|
153 |
+
"Language Model": ['ll_', 'rll_', 'logprob'],
|
154 |
+
"Working Memory": ['wm_'],
|
155 |
+
"Discourse": ['discourse'],
|
156 |
+
"Evaluation": ['rubric', 'evaluation', 'stealth'],
|
157 |
+
"Distribution": ['zipf', 'type_token'],
|
158 |
+
"Coherence": ['coherence'],
|
159 |
+
"Entity": ['entity', 'entities'],
|
160 |
+
"Cognitive": ['cognitive', 'load'],
|
161 |
+
}
|
162 |
+
|
163 |
+
# Categorize metrics
|
164 |
+
for category, keywords in patterns.items():
|
165 |
+
matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)]
|
166 |
+
if matching_metrics:
|
167 |
+
categories[category] = matching_metrics
|
168 |
+
|
169 |
+
# Find uncategorized metrics
|
170 |
+
categorized = set()
|
171 |
+
for cat_metrics in categories.values():
|
172 |
+
if cat_metrics != metrics: # Skip "All" category
|
173 |
+
categorized.update(cat_metrics)
|
174 |
+
|
175 |
+
uncategorized = [m for m in metrics if m not in categorized]
|
176 |
+
if uncategorized:
|
177 |
+
categories["Other"] = uncategorized
|
178 |
+
|
179 |
+
return categories
|
180 |
+
|
181 |
+
metric_categories = categorize_metrics(available_metrics)
|
182 |
+
|
183 |
+
# Metric selection interface
|
184 |
+
selection_mode = st.sidebar.radio(
|
185 |
+
"Selection Mode",
|
186 |
+
["By Category", "Search/Filter", "Select All"],
|
187 |
+
help="Choose how to select metrics"
|
188 |
+
)
|
189 |
+
|
190 |
+
if selection_mode == "By Category":
|
191 |
+
selected_category = st.sidebar.selectbox(
|
192 |
+
"Metric Category",
|
193 |
+
options=list(metric_categories.keys()),
|
194 |
+
help=f"Found {len(metric_categories)} categories"
|
195 |
+
)
|
196 |
+
|
197 |
+
available_in_category = metric_categories[selected_category]
|
198 |
+
default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category
|
199 |
+
|
200 |
+
# Add select all button for category
|
201 |
+
col1, col2 = st.sidebar.columns(2)
|
202 |
+
with col1:
|
203 |
+
if st.button("Select All", key="select_all_category"):
|
204 |
+
st.session_state.selected_metrics_category = available_in_category
|
205 |
+
with col2:
|
206 |
+
if st.button("Clear All", key="clear_all_category"):
|
207 |
+
st.session_state.selected_metrics_category = []
|
208 |
+
|
209 |
+
# Use session state for persistence
|
210 |
+
if "selected_metrics_category" not in st.session_state:
|
211 |
+
st.session_state.selected_metrics_category = default_selection
|
212 |
+
|
213 |
+
selected_metrics = st.sidebar.multiselect(
|
214 |
+
f"Select Metrics ({len(available_in_category)} available)",
|
215 |
+
options=available_in_category,
|
216 |
+
default=st.session_state.selected_metrics_category,
|
217 |
+
key="metrics_multiselect_category",
|
218 |
+
help="Choose metrics to visualize"
|
219 |
+
)
|
220 |
+
|
221 |
+
elif selection_mode == "Search/Filter":
|
222 |
+
search_term = st.sidebar.text_input(
|
223 |
+
"Search Metrics",
|
224 |
+
placeholder="Enter keywords to filter metrics...",
|
225 |
+
help="Search for metrics containing specific terms"
|
226 |
+
)
|
227 |
+
|
228 |
+
if search_term:
|
229 |
+
filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()]
|
230 |
+
else:
|
231 |
+
filtered_metrics = available_metrics
|
232 |
+
|
233 |
+
st.sidebar.write(f"Found {len(filtered_metrics)} metrics")
|
234 |
+
|
235 |
+
# Add select all button for search results
|
236 |
+
col1, col2 = st.sidebar.columns(2)
|
237 |
+
with col1:
|
238 |
+
if st.button("Select All", key="select_all_search"):
|
239 |
+
st.session_state.selected_metrics_search = filtered_metrics
|
240 |
+
with col2:
|
241 |
+
if st.button("Clear All", key="clear_all_search"):
|
242 |
+
st.session_state.selected_metrics_search = []
|
243 |
+
|
244 |
+
# Use session state for persistence
|
245 |
+
if "selected_metrics_search" not in st.session_state:
|
246 |
+
st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3]
|
247 |
+
|
248 |
+
selected_metrics = st.sidebar.multiselect(
|
249 |
+
"Select Metrics",
|
250 |
+
options=filtered_metrics,
|
251 |
+
default=st.session_state.selected_metrics_search,
|
252 |
+
key="metrics_multiselect_search",
|
253 |
+
help="Choose metrics to visualize"
|
254 |
+
)
|
255 |
+
|
256 |
+
else: # Select All
|
257 |
+
# Add select all button for all metrics
|
258 |
+
col1, col2 = st.sidebar.columns(2)
|
259 |
+
with col1:
|
260 |
+
if st.button("Select All", key="select_all_all"):
|
261 |
+
st.session_state.selected_metrics_all = available_metrics
|
262 |
+
with col2:
|
263 |
+
if st.button("Clear All", key="clear_all_all"):
|
264 |
+
st.session_state.selected_metrics_all = []
|
265 |
+
|
266 |
+
# Use session state for persistence
|
267 |
+
if "selected_metrics_all" not in st.session_state:
|
268 |
+
st.session_state.selected_metrics_all = available_metrics[:10] # Limit default to first 10 for performance
|
269 |
+
|
270 |
+
selected_metrics = st.sidebar.multiselect(
|
271 |
+
f"All Metrics ({len(available_metrics)} total)",
|
272 |
+
options=available_metrics,
|
273 |
+
default=st.session_state.selected_metrics_all,
|
274 |
+
key="metrics_multiselect_all",
|
275 |
+
help="All available metrics - be careful with performance for large selections"
|
276 |
+
)
|
277 |
+
|
278 |
+
# Show selection summary
|
279 |
+
if selected_metrics:
|
280 |
+
st.sidebar.success(f"Selected {len(selected_metrics)} metrics")
|
281 |
+
|
282 |
+
# Performance warning for large selections
|
283 |
+
if len(selected_metrics) > 20:
|
284 |
+
st.sidebar.warning(f"β οΈ Large selection ({len(selected_metrics)} metrics) may impact performance")
|
285 |
+
elif len(selected_metrics) > 50:
|
286 |
+
st.sidebar.error(f"π¨ Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance")
|
287 |
+
else:
|
288 |
+
st.sidebar.warning("No metrics selected")
|
289 |
+
|
290 |
+
# Metric info expander
|
291 |
+
with st.sidebar.expander("βΉοΈ Metric Information", expanded=False):
|
292 |
+
st.write(f"**Total Available Metrics:** {len(available_metrics)}")
|
293 |
+
st.write(f"**Categories Found:** {len(metric_categories)}")
|
294 |
+
|
295 |
+
if st.checkbox("Show all metric names", key="show_all_metrics"):
|
296 |
+
st.write("**All Available Metrics:**")
|
297 |
+
for i, metric in enumerate(available_metrics, 1):
|
298 |
+
st.write(f"{i}. `{metric}`")
|
299 |
+
|
300 |
+
# Filter data
|
301 |
+
filtered_df = df[df['type'].isin(selected_types)] if selected_types else df
|
302 |
+
filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded
|
303 |
+
|
304 |
+
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
|
305 |
+
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
|
306 |
+
|
307 |
+
# Main content tabs
|
308 |
+
tab1, tab2, tab3, tab4 = st.tabs(["π Distributions", "π Correlations", "π Comparisons", "π― Details"])
|
309 |
+
|
310 |
+
with tab1:
|
311 |
+
st.header("Distribution Analysis")
|
312 |
+
|
313 |
+
if not selected_metrics:
|
314 |
+
st.warning("Please select at least one metric to visualize.")
|
315 |
+
return
|
316 |
+
|
317 |
+
# Create distribution plots
|
318 |
+
for metric in selected_metrics:
|
319 |
+
full_metric_name = f"turn.turn_metrics.{metric}"
|
320 |
+
|
321 |
+
if full_metric_name not in filtered_df_exploded.columns:
|
322 |
+
st.warning(f"Metric {metric} not found in dataset")
|
323 |
+
continue
|
324 |
+
|
325 |
+
st.subheader(f"π {get_human_friendly_metric_name(metric)}")
|
326 |
+
|
327 |
+
# Clean the data
|
328 |
+
metric_data = filtered_df_exploded[['type', full_metric_name]].copy()
|
329 |
+
metric_data = metric_data.dropna()
|
330 |
+
|
331 |
+
if len(metric_data) == 0:
|
332 |
+
st.warning(f"No data available for {metric}")
|
333 |
+
continue
|
334 |
+
|
335 |
+
# Create plotly histogram
|
336 |
+
fig = px.histogram(
|
337 |
+
metric_data,
|
338 |
+
x=full_metric_name,
|
339 |
+
color='type',
|
340 |
+
marginal='box',
|
341 |
+
title=f"Distribution of {get_human_friendly_metric_name(metric)}",
|
342 |
+
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
|
343 |
+
opacity=0.7,
|
344 |
+
nbins=50
|
345 |
+
)
|
346 |
+
|
347 |
+
fig.update_layout(
|
348 |
+
xaxis_title=get_human_friendly_metric_name(metric),
|
349 |
+
yaxis_title="Count",
|
350 |
+
height=400
|
351 |
+
)
|
352 |
+
|
353 |
+
st.plotly_chart(fig, use_container_width=True)
|
354 |
+
|
355 |
+
# Summary statistics
|
356 |
+
col1, col2 = st.columns(2)
|
357 |
+
|
358 |
+
with col1:
|
359 |
+
st.write("**Summary Statistics**")
|
360 |
+
summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3)
|
361 |
+
st.dataframe(summary_stats)
|
362 |
+
|
363 |
+
with col2:
|
364 |
+
st.write("**Percentiles**")
|
365 |
+
percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3)
|
366 |
+
percentiles.columns = ['25%', '50%', '75%']
|
367 |
+
st.dataframe(percentiles)
|
368 |
+
|
369 |
+
with tab2:
|
370 |
+
st.header("Correlation Analysis")
|
371 |
+
|
372 |
+
if len(selected_metrics) < 2:
|
373 |
+
st.warning("Please select at least 2 metrics for correlation analysis.")
|
374 |
+
else:
|
375 |
+
# Prepare correlation data
|
376 |
+
corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
|
377 |
+
corr_data = filtered_df_exploded[corr_columns + ['type']].copy()
|
378 |
+
|
379 |
+
# Clean column names for display
|
380 |
+
corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns]
|
381 |
+
|
382 |
+
# Calculate correlation matrix
|
383 |
+
corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
|
384 |
+
|
385 |
+
# Create correlation heatmap
|
386 |
+
fig = px.imshow(
|
387 |
+
corr_matrix,
|
388 |
+
text_auto=True,
|
389 |
+
aspect="auto",
|
390 |
+
title="Correlation Matrix",
|
391 |
+
color_continuous_scale='RdBu_r',
|
392 |
+
zmin=-1, zmax=1
|
393 |
+
)
|
394 |
+
|
395 |
+
fig.update_layout(height=600)
|
396 |
+
st.plotly_chart(fig, use_container_width=True)
|
397 |
+
|
398 |
+
# Scatter plots for strong correlations
|
399 |
+
st.subheader("Strong Correlations")
|
400 |
+
|
401 |
+
# Find strong correlations (>0.7 or <-0.7)
|
402 |
+
strong_corrs = []
|
403 |
+
for i in range(len(corr_matrix.columns)):
|
404 |
+
for j in range(i+1, len(corr_matrix.columns)):
|
405 |
+
corr_val = corr_matrix.iloc[i, j]
|
406 |
+
if abs(corr_val) > 0.7:
|
407 |
+
strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
|
408 |
+
|
409 |
+
if strong_corrs:
|
410 |
+
for metric1, metric2, corr_val in strong_corrs[:3]: # Show top 3
|
411 |
+
fig = px.scatter(
|
412 |
+
corr_data,
|
413 |
+
x=metric1,
|
414 |
+
y=metric2,
|
415 |
+
color='type',
|
416 |
+
title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
|
417 |
+
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
|
418 |
+
opacity=0.6
|
419 |
+
)
|
420 |
+
st.plotly_chart(fig, use_container_width=True)
|
421 |
+
else:
|
422 |
+
st.info("No strong correlations (|r| > 0.7) found between selected metrics.")
|
423 |
+
|
424 |
+
with tab3:
|
425 |
+
st.header("Type Comparisons")
|
426 |
+
|
427 |
+
if not selected_metrics:
|
428 |
+
st.warning("Please select at least one metric to compare.")
|
429 |
+
else:
|
430 |
+
# Box plots for each metric
|
431 |
+
for metric in selected_metrics:
|
432 |
+
full_metric_name = f"turn.turn_metrics.{metric}"
|
433 |
+
|
434 |
+
if full_metric_name not in filtered_df_exploded.columns:
|
435 |
+
continue
|
436 |
+
|
437 |
+
st.subheader(f"π¦ {get_human_friendly_metric_name(metric)} by Type")
|
438 |
+
|
439 |
+
# Create box plot
|
440 |
+
fig = px.box(
|
441 |
+
filtered_df_exploded.dropna(subset=[full_metric_name]),
|
442 |
+
x='type',
|
443 |
+
y=full_metric_name,
|
444 |
+
title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
|
445 |
+
color='type',
|
446 |
+
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None
|
447 |
+
)
|
448 |
+
|
449 |
+
fig.update_layout(
|
450 |
+
xaxis_title="Dataset Type",
|
451 |
+
yaxis_title=get_human_friendly_metric_name(metric),
|
452 |
+
height=400
|
453 |
+
)
|
454 |
+
|
455 |
+
st.plotly_chart(fig, use_container_width=True)
|
456 |
+
|
457 |
+
with tab4:
|
458 |
+
st.header("Detailed View")
|
459 |
+
|
460 |
+
# Data overview
|
461 |
+
st.subheader("π Dataset Overview")
|
462 |
+
|
463 |
+
st.info(f"**Current Dataset:** `{selected_dataset}`")
|
464 |
+
|
465 |
+
col1, col2, col3 = st.columns(3)
|
466 |
+
|
467 |
+
with col1:
|
468 |
+
st.metric("Total Conversations", len(filtered_df))
|
469 |
+
|
470 |
+
with col2:
|
471 |
+
st.metric("Total Turns", len(filtered_df_exploded))
|
472 |
+
|
473 |
+
with col3:
|
474 |
+
st.metric("Available Metrics", len(available_metrics))
|
475 |
+
|
476 |
+
# Type distribution
|
477 |
+
st.subheader("π Type Distribution")
|
478 |
+
type_counts = filtered_df['type'].value_counts()
|
479 |
+
|
480 |
+
fig = px.pie(
|
481 |
+
values=type_counts.values,
|
482 |
+
names=type_counts.index,
|
483 |
+
title="Distribution of Conversation Types",
|
484 |
+
color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None
|
485 |
+
)
|
486 |
+
|
487 |
+
st.plotly_chart(fig, use_container_width=True)
|
488 |
+
|
489 |
+
# Sample data
|
490 |
+
st.subheader("π Sample Data")
|
491 |
+
|
492 |
+
if st.checkbox("Show raw data sample"):
|
493 |
+
sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns]
|
494 |
+
sample_data = filtered_df_exploded[sample_cols].head(100)
|
495 |
+
st.dataframe(sample_data)
|
496 |
+
|
497 |
+
# Metric availability
|
498 |
+
st.subheader("π Metric Availability")
|
499 |
+
|
500 |
+
metric_completeness = {}
|
501 |
+
for metric in selected_metrics:
|
502 |
+
full_metric_name = f"turn.turn_metrics.{metric}"
|
503 |
+
if full_metric_name in filtered_df_exploded.columns:
|
504 |
+
completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100
|
505 |
+
metric_completeness[get_human_friendly_metric_name(metric)] = completeness
|
506 |
+
|
507 |
+
if metric_completeness:
|
508 |
+
completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)'])
|
509 |
+
fig = px.bar(
|
510 |
+
completeness_df,
|
511 |
+
x='Metric',
|
512 |
+
y='Completeness (%)',
|
513 |
+
title="Data Completeness by Metric",
|
514 |
+
color='Completeness (%)',
|
515 |
+
color_continuous_scale='Viridis'
|
516 |
+
)
|
517 |
+
fig.update_layout(xaxis_tickangle=-45, height=400)
|
518 |
+
st.plotly_chart(fig, use_container_width=True)
|
519 |
+
|
520 |
+
if __name__ == "__main__":
|
521 |
+
main()
|