Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- streamlit_app.py +205 -16
streamlit_app.py
CHANGED
@@ -12,17 +12,179 @@ import plotly.express as px
|
|
12 |
import plotly.graph_objects as go
|
13 |
from plotly.subplots import make_subplots
|
14 |
import warnings
|
|
|
|
|
15 |
warnings.filterwarnings('ignore')
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Setup page config
|
28 |
st.set_page_config(
|
@@ -113,6 +275,11 @@ def main():
|
|
113 |
if not data_loaded:
|
114 |
st.stop()
|
115 |
|
|
|
|
|
|
|
|
|
|
|
116 |
# Sidebar controls
|
117 |
st.sidebar.header("ποΈ Controls")
|
118 |
|
@@ -127,13 +294,32 @@ def main():
|
|
127 |
|
128 |
# Role filter
|
129 |
if 'turn.role' in df_exploded.columns:
|
130 |
-
roles = df_exploded['turn.role'].unique()
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
else:
|
138 |
selected_roles = None
|
139 |
|
@@ -303,6 +489,9 @@ def main():
|
|
303 |
|
304 |
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
|
305 |
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
|
|
|
|
|
|
|
306 |
|
307 |
# Main content tabs
|
308 |
tab1, tab2, tab3, tab4 = st.tabs(["π Distributions", "π Correlations", "π Comparisons", "π― Details"])
|
|
|
12 |
import plotly.graph_objects as go
|
13 |
from plotly.subplots import make_subplots
|
14 |
import warnings
|
15 |
+
import datasets
|
16 |
+
import logging
|
17 |
warnings.filterwarnings('ignore')
|
18 |
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# Constants
|
24 |
+
PLOT_PALETTE = {
|
25 |
+
"jailbreak": "#D000D8", # Purple
|
26 |
+
"benign": "#008393", # Cyan
|
27 |
+
"control": "#EF0000", # Red
|
28 |
+
}
|
29 |
+
|
30 |
+
# Utility functions
|
31 |
+
def load_and_prepare_dataset(dataset_config):
|
32 |
+
"""Load the risky conversations dataset and prepare it for analysis."""
|
33 |
+
logger.info("Loading dataset...")
|
34 |
+
|
35 |
+
dataset_name = dataset_config["dataset_name"]
|
36 |
+
logger.info(f"Loading dataset: {dataset_name}")
|
37 |
+
|
38 |
+
# Load the dataset
|
39 |
+
dataset = datasets.load_dataset(dataset_name, split="train")
|
40 |
+
logger.info(f"Dataset loaded with {len(dataset)} conversations")
|
41 |
+
|
42 |
+
# Convert to pandas
|
43 |
+
pandas_dataset = dataset.to_pandas()
|
44 |
+
|
45 |
+
# Explode the conversation column
|
46 |
+
pandas_dataset_exploded = pandas_dataset.explode("conversation")
|
47 |
+
pandas_dataset_exploded = pandas_dataset_exploded.reset_index(drop=True)
|
48 |
+
|
49 |
+
# Normalize conversation data
|
50 |
+
conversations_unfolded = pd.json_normalize(
|
51 |
+
pandas_dataset_exploded["conversation"],
|
52 |
+
)
|
53 |
+
conversations_unfolded = conversations_unfolded.add_prefix("turn.")
|
54 |
+
|
55 |
+
# Ensure there's a 'conversation_metrics' column, even if empty
|
56 |
+
if "conversation_metrics" not in pandas_dataset_exploded.columns:
|
57 |
+
pandas_dataset_exploded["conversation_metrics"] = [{}] * len(
|
58 |
+
pandas_dataset_exploded
|
59 |
+
)
|
60 |
+
|
61 |
+
# Normalize conversation metrics
|
62 |
+
conversations_metrics_unfolded = pd.json_normalize(
|
63 |
+
pandas_dataset_exploded["conversation_metrics"]
|
64 |
+
)
|
65 |
+
conversations_metrics_unfolded = conversations_metrics_unfolded.add_prefix(
|
66 |
+
"conversation_metrics."
|
67 |
+
)
|
68 |
+
|
69 |
+
# Concatenate all dataframes
|
70 |
+
pandas_dataset_exploded = pd.concat(
|
71 |
+
[
|
72 |
+
pandas_dataset_exploded.drop(
|
73 |
+
columns=["conversation", "conversation_metrics"]
|
74 |
+
),
|
75 |
+
conversations_unfolded,
|
76 |
+
conversations_metrics_unfolded,
|
77 |
+
],
|
78 |
+
axis=1,
|
79 |
+
)
|
80 |
+
|
81 |
+
logger.info(f"Dataset prepared with {len(pandas_dataset_exploded)} turns")
|
82 |
+
return pandas_dataset, pandas_dataset_exploded
|
83 |
+
|
84 |
+
def get_available_turn_metrics(dataset_exploded):
|
85 |
+
"""Dynamically discover all available turn metrics from the dataset."""
|
86 |
+
# Find all columns that contain turn metrics
|
87 |
+
turn_metric_columns = [
|
88 |
+
col for col in dataset_exploded.columns if col.startswith("turn.turn_metrics.")
|
89 |
+
]
|
90 |
+
|
91 |
+
# Extract the metric names by removing the prefix
|
92 |
+
metrics = [col.replace("turn.turn_metrics.", "") for col in turn_metric_columns]
|
93 |
+
|
94 |
+
# Sort metrics for consistent ordering
|
95 |
+
metrics = sorted(metrics)
|
96 |
+
|
97 |
+
logger.info(f"Discovered {len(metrics)} available turn metrics")
|
98 |
+
return metrics
|
99 |
+
|
100 |
+
def get_human_friendly_metric_name(metric_name):
|
101 |
+
"""Convert a metric name to a human-friendly display name."""
|
102 |
+
# Mapping of metric names to human-friendly display names
|
103 |
+
metric_display_names = {
|
104 |
+
# Length metrics
|
105 |
+
"conversational_length_tokens": "Length in Tokens",
|
106 |
+
"conversational_length_words": "Length in Words",
|
107 |
+
"conversational_length_bytes": "Length in Bytes",
|
108 |
+
|
109 |
+
# Readability metrics
|
110 |
+
"readability_flesch_score": "Flesch Reading Ease",
|
111 |
+
"readability_standard_score": "Reading Grade Level",
|
112 |
+
|
113 |
+
# Compression metrics
|
114 |
+
"lzw_compression": "LZW Compression Ratio",
|
115 |
+
|
116 |
+
# Language model metrics
|
117 |
+
"ll_mean_logprobs": "Mean Log Probability",
|
118 |
+
"ll_max_logprobs": "Maximum Log Probability",
|
119 |
+
"ll_min_logprobs": "Minimum Log Probability",
|
120 |
+
"rll_mean_logprobs": "Reverse Mean Log Probability",
|
121 |
+
"rll_max_logprobs": "Reverse Maximum Log Probability",
|
122 |
+
"rll_min_logprobs": "Reverse Minimum Log Probability",
|
123 |
+
|
124 |
+
# Lexical diversity
|
125 |
+
"type_token_ratio": "Type-Token Ratio",
|
126 |
+
|
127 |
+
# Language distribution
|
128 |
+
"zipf_score": "Zipf Distribution Score",
|
129 |
+
|
130 |
+
# Evaluation metrics
|
131 |
+
"rubric_evaluation.Stealth": "Stealth Score",
|
132 |
+
|
133 |
+
# Working memory metrics
|
134 |
+
"wm_total_entity_references": "Total Entity References",
|
135 |
+
"wm_unique_entities_count": "Unique Entities Count",
|
136 |
+
"wm_named_entity_mentions": "Named Entity Mentions",
|
137 |
+
"wm_concept_noun_mentions": "Concept Noun Mentions",
|
138 |
+
"wm_pronoun_references": "Pronoun References",
|
139 |
+
"wm_entity_density_per_word": "Entity Density per Word",
|
140 |
+
"wm_entity_density_per_100_words": "Entity Density per 100 Words",
|
141 |
+
"wm_entity_density_per_100_chars": "Entity Density per 100 Characters",
|
142 |
+
"wm_entity_diversity_ratio": "Entity Diversity Ratio",
|
143 |
+
"wm_entity_repetition_ratio": "Entity Repetition Ratio",
|
144 |
+
"wm_cognitive_load_score": "Cognitive Load Score",
|
145 |
+
"wm_high_cognitive_load": "High Cognitive Load",
|
146 |
+
|
147 |
+
# Discourse coherence metrics
|
148 |
+
"discourse_coherence_to_next_user": "Coherence to Next User Turn",
|
149 |
+
"discourse_coherence_to_next_turn": "Coherence to Next Turn",
|
150 |
+
"discourse_mean_user_coherence": "Mean User Coherence",
|
151 |
+
"discourse_user_coherence_variance": "User Coherence Variance",
|
152 |
+
"discourse_user_topic_drift": "User Topic Drift",
|
153 |
+
"discourse_user_entity_continuity": "User Entity Continuity",
|
154 |
+
"discourse_num_user_turns": "Number of User Turns",
|
155 |
+
|
156 |
+
# Tokens per byte
|
157 |
+
"tokens_per_byte": "Tokens per Byte",
|
158 |
+
}
|
159 |
+
|
160 |
+
# Check exact match first
|
161 |
+
if metric_name in metric_display_names:
|
162 |
+
return metric_display_names[metric_name]
|
163 |
+
|
164 |
+
# Handle conversation-level aggregations
|
165 |
+
for suffix in ["_conversation_mean", "_conversation_min", "_conversation_max", "_conversation_std", "_conversation_count"]:
|
166 |
+
if metric_name.endswith(suffix):
|
167 |
+
base_metric = metric_name[:-len(suffix)]
|
168 |
+
if base_metric in metric_display_names:
|
169 |
+
agg_type = suffix.split("_")[-1].title()
|
170 |
+
return f"{metric_display_names[base_metric]} ({agg_type})"
|
171 |
+
|
172 |
+
# Handle turn-level metrics with "turn.turn_metrics." prefix
|
173 |
+
if metric_name.startswith("turn.turn_metrics."):
|
174 |
+
base_metric = metric_name[len("turn.turn_metrics."):]
|
175 |
+
if base_metric in metric_display_names:
|
176 |
+
return metric_display_names[base_metric]
|
177 |
+
|
178 |
+
# Fallback: convert underscores to spaces and title case
|
179 |
+
clean_name = metric_name
|
180 |
+
for prefix in ["turn.turn_metrics.", "conversation_metrics.", "turn_metrics."]:
|
181 |
+
if clean_name.startswith(prefix):
|
182 |
+
clean_name = clean_name[len(prefix):]
|
183 |
+
break
|
184 |
+
|
185 |
+
# Convert to human-readable format
|
186 |
+
clean_name = clean_name.replace("_", " ").title()
|
187 |
+
return clean_name
|
188 |
|
189 |
# Setup page config
|
190 |
st.set_page_config(
|
|
|
275 |
if not data_loaded:
|
276 |
st.stop()
|
277 |
|
278 |
+
# Check if we have data after filtering
|
279 |
+
if len(filtered_df_exploded) == 0:
|
280 |
+
st.error("No data available with current filters. Please adjust your selection.")
|
281 |
+
st.stop()
|
282 |
+
|
283 |
# Sidebar controls
|
284 |
st.sidebar.header("ποΈ Controls")
|
285 |
|
|
|
294 |
|
295 |
# Role filter
|
296 |
if 'turn.role' in df_exploded.columns:
|
297 |
+
roles = df_exploded['turn.role'].dropna().unique()
|
298 |
+
# Assert only user and assistant roles exist
|
299 |
+
expected_roles = {'user', 'assistant'}
|
300 |
+
actual_roles = set(roles)
|
301 |
+
assert actual_roles.issubset(expected_roles), f"Unexpected roles found: {actual_roles - expected_roles}. Expected only 'user' and 'assistant'"
|
302 |
+
|
303 |
+
st.sidebar.subheader("π₯ Role Filter")
|
304 |
+
col1, col2 = st.sidebar.columns(2)
|
305 |
+
|
306 |
+
with col1:
|
307 |
+
include_user = st.checkbox("User", value=True, help="Include user turns")
|
308 |
+
with col2:
|
309 |
+
include_assistant = st.checkbox("Assistant", value=True, help="Include assistant turns")
|
310 |
+
|
311 |
+
# Build selected roles list
|
312 |
+
selected_roles = []
|
313 |
+
if include_user and 'user' in roles:
|
314 |
+
selected_roles.append('user')
|
315 |
+
if include_assistant and 'assistant' in roles:
|
316 |
+
selected_roles.append('assistant')
|
317 |
+
|
318 |
+
# Show selection info
|
319 |
+
if selected_roles:
|
320 |
+
st.sidebar.success(f"Including: {', '.join(selected_roles)}")
|
321 |
+
else:
|
322 |
+
st.sidebar.warning("No roles selected")
|
323 |
else:
|
324 |
selected_roles = None
|
325 |
|
|
|
489 |
|
490 |
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
|
491 |
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
|
492 |
+
elif selected_roles is not None and len(selected_roles) == 0:
|
493 |
+
# If roles exist but none are selected, show empty dataset
|
494 |
+
filtered_df_exploded = filtered_df_exploded.iloc[0:0] # Empty dataframe with same structure
|
495 |
|
496 |
# Main content tabs
|
497 |
tab1, tab2, tab3, tab4 = st.tabs(["π Distributions", "π Correlations", "π Comparisons", "π― Details"])
|