#!/usr/bin/env python3 """ Streamlit app for interactive complexity metrics visualization. """ import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import warnings warnings.filterwarnings('ignore') # Import visualization utilities from visualization.utils import ( load_and_prepare_dataset, get_available_turn_metrics, get_human_friendly_metric_name, clean_metric_values, PLOT_PALETTE, setup_plot_style ) # Setup page config st.set_page_config( page_title="Complexity Metrics Explorer", page_icon="📊", layout="wide", initial_sidebar_state="expanded" ) # Cache data loading @st.cache_data def load_data(dataset_name): """Load and cache the dataset""" df, df_exploded = load_and_prepare_dataset({ 'dataset_name': dataset_name }) return df, df_exploded @st.cache_data def get_metrics(df_exploded): """Get available metrics from the dataset""" return get_available_turn_metrics(df_exploded) def main(): st.title("🔍 Complexity Metrics Explorer") st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.") # Dataset selection st.sidebar.header("đŸ—‚ī¸ Dataset Selection") # Available datasets available_datasets = [ "jailbreaks_dataset_with_results_reduced", "jailbreaks_dataset_with_results", "jailbreaks_dataset_with_results_filtered_successful_jailbreak", "Custom..." ] selected_option = st.sidebar.selectbox( "Select Dataset", options=available_datasets, index=0, # Default to reduced dataset help="Choose which dataset to analyze" ) # Handle custom dataset input if selected_option == "Custom...": selected_dataset = st.sidebar.text_input( "Custom Dataset Name", value="jailbreaks_dataset_with_results_reduced", help="Enter the full dataset name (e.g., 'jailbreaks_dataset_with_results_reduced')" ) if not selected_dataset.strip(): st.sidebar.warning("Please enter a dataset name") st.stop() else: selected_dataset = selected_option # Add refresh button if st.sidebar.button("🔄 Refresh Data", help="Clear cache and reload dataset"): st.cache_data.clear() st.rerun() # Load data with st.spinner(f"Loading dataset: {selected_dataset}..."): try: df, df_exploded = load_data(selected_dataset) available_metrics = get_metrics(df_exploded) # Display dataset info col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Dataset", selected_dataset.split('_')[-1].title()) with col2: st.metric("Conversations", f"{len(df):,}") with col3: st.metric("Turns", f"{len(df_exploded):,}") with col4: st.metric("Metrics", len(available_metrics)) data_loaded = True except Exception as e: st.error(f"Error loading dataset: {e}") st.info("Please check if the dataset exists and is accessible.") st.info("💡 Try using one of the predefined dataset options instead of custom input.") data_loaded = False if not data_loaded: st.stop() # Sidebar controls st.sidebar.header("đŸŽ›ī¸ Controls") # Dataset type filter dataset_types = df['type'].unique() selected_types = st.sidebar.multiselect( "Select Dataset Types", options=dataset_types, default=dataset_types, help="Filter by conversation type" ) # Role filter if 'turn.role' in df_exploded.columns: roles = df_exploded['turn.role'].unique() selected_roles = st.sidebar.multiselect( "Select Roles", options=roles, default=roles, help="Filter by turn role" ) else: selected_roles = None # Metric selection st.sidebar.header("📊 Metrics") # Dynamic metric categorization based on common patterns def categorize_metrics(metrics): """Dynamically categorize metrics based on naming patterns""" categories = {"All": metrics} # Always include all metrics # Common patterns to look for patterns = { "Length": ['length', 'byte', 'word', 'token', 'char'], "Readability": ['readability', 'flesch', 'standard'], "Compression": ['lzw', 'compression'], "Language Model": ['ll_', 'rll_', 'logprob'], "Working Memory": ['wm_'], "Discourse": ['discourse'], "Evaluation": ['rubric', 'evaluation', 'stealth'], "Distribution": ['zipf', 'type_token'], "Coherence": ['coherence'], "Entity": ['entity', 'entities'], "Cognitive": ['cognitive', 'load'], } # Categorize metrics for category, keywords in patterns.items(): matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)] if matching_metrics: categories[category] = matching_metrics # Find uncategorized metrics categorized = set() for cat_metrics in categories.values(): if cat_metrics != metrics: # Skip "All" category categorized.update(cat_metrics) uncategorized = [m for m in metrics if m not in categorized] if uncategorized: categories["Other"] = uncategorized return categories metric_categories = categorize_metrics(available_metrics) # Metric selection interface selection_mode = st.sidebar.radio( "Selection Mode", ["By Category", "Search/Filter", "Select All"], help="Choose how to select metrics" ) if selection_mode == "By Category": selected_category = st.sidebar.selectbox( "Metric Category", options=list(metric_categories.keys()), help=f"Found {len(metric_categories)} categories" ) available_in_category = metric_categories[selected_category] default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category # Add select all button for category col1, col2 = st.sidebar.columns(2) with col1: if st.button("Select All", key="select_all_category"): st.session_state.selected_metrics_category = available_in_category with col2: if st.button("Clear All", key="clear_all_category"): st.session_state.selected_metrics_category = [] # Use session state for persistence if "selected_metrics_category" not in st.session_state: st.session_state.selected_metrics_category = default_selection selected_metrics = st.sidebar.multiselect( f"Select Metrics ({len(available_in_category)} available)", options=available_in_category, default=st.session_state.selected_metrics_category, key="metrics_multiselect_category", help="Choose metrics to visualize" ) elif selection_mode == "Search/Filter": search_term = st.sidebar.text_input( "Search Metrics", placeholder="Enter keywords to filter metrics...", help="Search for metrics containing specific terms" ) if search_term: filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()] else: filtered_metrics = available_metrics st.sidebar.write(f"Found {len(filtered_metrics)} metrics") # Add select all button for search results col1, col2 = st.sidebar.columns(2) with col1: if st.button("Select All", key="select_all_search"): st.session_state.selected_metrics_search = filtered_metrics with col2: if st.button("Clear All", key="clear_all_search"): st.session_state.selected_metrics_search = [] # Use session state for persistence if "selected_metrics_search" not in st.session_state: st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3] selected_metrics = st.sidebar.multiselect( "Select Metrics", options=filtered_metrics, default=st.session_state.selected_metrics_search, key="metrics_multiselect_search", help="Choose metrics to visualize" ) else: # Select All # Add select all button for all metrics col1, col2 = st.sidebar.columns(2) with col1: if st.button("Select All", key="select_all_all"): st.session_state.selected_metrics_all = available_metrics with col2: if st.button("Clear All", key="clear_all_all"): st.session_state.selected_metrics_all = [] # Use session state for persistence if "selected_metrics_all" not in st.session_state: st.session_state.selected_metrics_all = available_metrics[:10] # Limit default to first 10 for performance selected_metrics = st.sidebar.multiselect( f"All Metrics ({len(available_metrics)} total)", options=available_metrics, default=st.session_state.selected_metrics_all, key="metrics_multiselect_all", help="All available metrics - be careful with performance for large selections" ) # Show selection summary if selected_metrics: st.sidebar.success(f"Selected {len(selected_metrics)} metrics") # Performance warning for large selections if len(selected_metrics) > 20: st.sidebar.warning(f"âš ī¸ Large selection ({len(selected_metrics)} metrics) may impact performance") elif len(selected_metrics) > 50: st.sidebar.error(f"🚨 Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance") else: st.sidebar.warning("No metrics selected") # Metric info expander with st.sidebar.expander("â„šī¸ Metric Information", expanded=False): st.write(f"**Total Available Metrics:** {len(available_metrics)}") st.write(f"**Categories Found:** {len(metric_categories)}") if st.checkbox("Show all metric names", key="show_all_metrics"): st.write("**All Available Metrics:**") for i, metric in enumerate(available_metrics, 1): st.write(f"{i}. `{metric}`") # Filter data filtered_df = df[df['type'].isin(selected_types)] if selected_types else df filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded if selected_roles and 'turn.role' in filtered_df_exploded.columns: filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)] # Main content tabs tab1, tab2, tab3, tab4 = st.tabs(["📊 Distributions", "🔗 Correlations", "📈 Comparisons", "đŸŽ¯ Details"]) with tab1: st.header("Distribution Analysis") if not selected_metrics: st.warning("Please select at least one metric to visualize.") return # Create distribution plots for metric in selected_metrics: full_metric_name = f"turn.turn_metrics.{metric}" if full_metric_name not in filtered_df_exploded.columns: st.warning(f"Metric {metric} not found in dataset") continue st.subheader(f"📊 {get_human_friendly_metric_name(metric)}") # Clean the data metric_data = filtered_df_exploded[['type', full_metric_name]].copy() metric_data = metric_data.dropna() if len(metric_data) == 0: st.warning(f"No data available for {metric}") continue # Create plotly histogram fig = px.histogram( metric_data, x=full_metric_name, color='type', marginal='box', title=f"Distribution of {get_human_friendly_metric_name(metric)}", color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None, opacity=0.7, nbins=50 ) fig.update_layout( xaxis_title=get_human_friendly_metric_name(metric), yaxis_title="Count", height=400 ) st.plotly_chart(fig, use_container_width=True) # Summary statistics col1, col2 = st.columns(2) with col1: st.write("**Summary Statistics**") summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3) st.dataframe(summary_stats) with col2: st.write("**Percentiles**") percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3) percentiles.columns = ['25%', '50%', '75%'] st.dataframe(percentiles) with tab2: st.header("Correlation Analysis") if len(selected_metrics) < 2: st.warning("Please select at least 2 metrics for correlation analysis.") else: # Prepare correlation data corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics] corr_data = filtered_df_exploded[corr_columns + ['type']].copy() # Clean column names for display corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns] # Calculate correlation matrix corr_matrix = corr_data.select_dtypes(include=[np.number]).corr() # Create correlation heatmap fig = px.imshow( corr_matrix, text_auto=True, aspect="auto", title="Correlation Matrix", color_continuous_scale='RdBu_r', zmin=-1, zmax=1 ) fig.update_layout(height=600) st.plotly_chart(fig, use_container_width=True) # Scatter plots for strong correlations st.subheader("Strong Correlations") # Find strong correlations (>0.7 or <-0.7) strong_corrs = [] for i in range(len(corr_matrix.columns)): for j in range(i+1, len(corr_matrix.columns)): corr_val = corr_matrix.iloc[i, j] if abs(corr_val) > 0.7: strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val)) if strong_corrs: for metric1, metric2, corr_val in strong_corrs[:3]: # Show top 3 fig = px.scatter( corr_data, x=metric1, y=metric2, color='type', title=f"{metric1} vs {metric2} (r={corr_val:.3f})", color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None, opacity=0.6 ) st.plotly_chart(fig, use_container_width=True) else: st.info("No strong correlations (|r| > 0.7) found between selected metrics.") with tab3: st.header("Type Comparisons") if not selected_metrics: st.warning("Please select at least one metric to compare.") else: # Box plots for each metric for metric in selected_metrics: full_metric_name = f"turn.turn_metrics.{metric}" if full_metric_name not in filtered_df_exploded.columns: continue st.subheader(f"đŸ“Ļ {get_human_friendly_metric_name(metric)} by Type") # Create box plot fig = px.box( filtered_df_exploded.dropna(subset=[full_metric_name]), x='type', y=full_metric_name, title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type", color='type', color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None ) fig.update_layout( xaxis_title="Dataset Type", yaxis_title=get_human_friendly_metric_name(metric), height=400 ) st.plotly_chart(fig, use_container_width=True) with tab4: st.header("Detailed View") # Data overview st.subheader("📋 Dataset Overview") st.info(f"**Current Dataset:** `{selected_dataset}`") col1, col2, col3 = st.columns(3) with col1: st.metric("Total Conversations", len(filtered_df)) with col2: st.metric("Total Turns", len(filtered_df_exploded)) with col3: st.metric("Available Metrics", len(available_metrics)) # Type distribution st.subheader("📊 Type Distribution") type_counts = filtered_df['type'].value_counts() fig = px.pie( values=type_counts.values, names=type_counts.index, title="Distribution of Conversation Types", color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None ) st.plotly_chart(fig, use_container_width=True) # Sample data st.subheader("📄 Sample Data") if st.checkbox("Show raw data sample"): sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns] sample_data = filtered_df_exploded[sample_cols].head(100) st.dataframe(sample_data) # Metric availability st.subheader("📊 Metric Availability") metric_completeness = {} for metric in selected_metrics: full_metric_name = f"turn.turn_metrics.{metric}" if full_metric_name in filtered_df_exploded.columns: completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100 metric_completeness[get_human_friendly_metric_name(metric)] = completeness if metric_completeness: completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)']) fig = px.bar( completeness_df, x='Metric', y='Completeness (%)', title="Data Completeness by Metric", color='Completeness (%)', color_continuous_scale='Viridis' ) fig.update_layout(xaxis_tickangle=-45, height=400) st.plotly_chart(fig, use_container_width=True) if __name__ == "__main__": main()