Spaces:
Sleeping
Sleeping
fixed major changes
Browse files
app.py
CHANGED
@@ -7,12 +7,31 @@ from google.cloud import aiplatform
|
|
7 |
from transformers import pipeline
|
8 |
from google.genai import types
|
9 |
import gradio as gr
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Configure Gemini API for drafting (free)
|
13 |
genai_ext.configure(api_key=apikey)
|
14 |
-
llm_model = genai_ext.GenerativeModel('gemini-1.5-
|
15 |
-
|
16 |
# Real classifiers
|
17 |
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # For D
|
18 |
sentiment_classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") # For M
|
@@ -61,7 +80,7 @@ class HumanLikeChatbot:
|
|
61 |
# Clean input
|
62 |
clean_message = message.lower().strip()
|
63 |
if len(clean_message) < 3 or not any(c.isalpha() for c in clean_message):
|
64 |
-
return "
|
65 |
|
66 |
# Emotion detect from tuned model
|
67 |
contents = [
|
|
|
7 |
from transformers import pipeline
|
8 |
from google.genai import types
|
9 |
import gradio as gr
|
10 |
+
import torch
|
11 |
+
import os, tempfile
|
12 |
+
import json
|
13 |
+
|
14 |
+
creds_json = os.getenv("GCP_CREDS_JSON")
|
15 |
+
if not creds_json:
|
16 |
+
raise Exception("⚠️ Missing GCP_CREDS_JSON secret!")
|
17 |
+
|
18 |
+
# Save to temp file
|
19 |
+
with tempfile.NamedTemporaryFile(mode='w+', delete=False) as tmpfile:
|
20 |
+
tmpfile.write(creds_json)
|
21 |
+
creds_path = tmpfile.name
|
22 |
+
|
23 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = creds_path
|
24 |
+
|
25 |
+
# Initialize GCP API
|
26 |
+
aiplatform.init(project="your-project-id", location="us-central1")
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
apikey = os.environ["GEMINI_API_KEY"] # Replace or use os.getenv if secret
|
31 |
|
32 |
# Configure Gemini API for drafting (free)
|
33 |
genai_ext.configure(api_key=apikey)
|
34 |
+
llm_model = genai_ext.GenerativeModel('gemini-1.5-pro')
|
|
|
35 |
# Real classifiers
|
36 |
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # For D
|
37 |
sentiment_classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") # For M
|
|
|
80 |
# Clean input
|
81 |
clean_message = message.lower().strip()
|
82 |
if len(clean_message) < 3 or not any(c.isalpha() for c in clean_message):
|
83 |
+
return "Be clear buddy (E Score: 0.0)"
|
84 |
|
85 |
# Emotion detect from tuned model
|
86 |
contents = [
|