from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool import pandas as pd from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def get_stock_signal(symbol: str, interval: str) -> str: """Retrieves intraday stock data for the given symbol using the Alpha Vantage API, computes exponential moving averages (EMA), and generates a trading signal based on an EMA crossover strategy. Args: symbol: A string representing the stock symbol to analyze (e.g., "AAPL", "GOOG", "MSFT", "TSLA"). interval: A string representing the time interval between data points (e.g., "1min", "5min", "15min", "60min"). """ API_KEY = 'RG9XKRIYBL2EV3V3' url = ( f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY' f'&symbol={symbol}&interval={interval}&outputsize=full&apikey={API_KEY}' ) response = requests.get(url) data = response.json() time_series_key = f"Time Series ({interval})" time_series = data.get(time_series_key, {}) if not time_series: raise ValueError("Failed to retrieve data. Check your API key, symbol, and interval.") # Create a DataFrame from the time series data df = pd.DataFrame.from_dict(time_series, orient='index') df = df.rename(columns={ '1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'close', '5. volume': 'volume' }) df.index = pd.to_datetime(df.index) df = df.sort_index() df['close'] = pd.to_numeric(df['close']) # Ensure there is enough data to calculate the EMAs if len(df) < 26: return f"Insufficient data to calculate the required EMAs for {symbol} at a {interval} interval." # Improved Strategy: Using Exponential Moving Averages (EMA) for a more responsive indicator. # Short-term EMA (e.g., 12 periods) and Long-term EMA (e.g., 26 periods) df['EMA_short'] = df['close'].ewm(span=12, adjust=False).mean() df['EMA_long'] = df['close'].ewm(span=26, adjust=False).mean() # Get the latest two data points to check for a crossover latest = df.iloc[-1] prev = df.iloc[-2] # Determine buy/sell signal based on EMA crossover signal = "Hold" if prev['EMA_short'] < prev['EMA_long'] and latest['EMA_short'] > latest['EMA_long']: signal = "Buy" elif prev['EMA_short'] > prev['EMA_long'] and latest['EMA_short'] < latest['EMA_long']: signal = "Sell" # Return a complete sentence with the decision decision = (f"The latest closing price for {symbol.upper()} at a {interval} interval is " f"${latest['close']:.2f}, and the recommended action is to {signal}.") return decision @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, # model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) search_tool = DuckDuckGoSearchTool() with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, get_stock_signal, image_generation_tool, get_current_time_in_timezone], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()