import gradio as gr import joblib from transformers import pipeline # Load model dan pipeline model = joblib.load("ensemble_model.pkl") vectorizer = joblib.load("vectorizer.pkl") qa_pipe = pipeline("question-answering", model="Rifky/IndoBERT-QA") ner_pipe = pipeline("ner", model="cahya/bert-base-indonesian-NER", aggregation_strategy="simple") # --- Fungsi --- def detect_hoax(text): vec = vectorizer.transform([text]) result = model.predict(vec)[0] if result == 1: return "
HOAX
" else: return "
BUKAN HOAX
" def qa_manual(message, history, context): if not context: return history + [[message, "Mohon isi teks berita terlebih dahulu."]] result = qa_pipe(question=message, context=context) return history + [[message, result["answer"]]] def ner(text): entities = ner_pipe(text) styled = "" color_map = { "PER": "#ffd1dc", "ORG": "#d1e0ff", "LOC": "#d1ffd1", "MISC": "#fdfd96" } for ent in entities: color = color_map.get(ent["entity_group"], "#eee") styled += f"{ent['word']} ({ent['entity_group']}) " return styled # --- UI Gradio --- with gr.Blocks() as demo: gr.Markdown("## Hoax Detector App") context_input = gr.Textbox(label="Teks Berita / Konteks", lines=5, placeholder="Masukkan teks berita di sini...") with gr.Tab("Deteksi Hoaks"): detect_btn = gr.Button("DETEKSI") hoax_output = gr.HTML() detect_btn.click(fn=detect_hoax, inputs=context_input, outputs=hoax_output) with gr.Tab("QA"): #gr.Markdown("### Tanya Jawab Berdasarkan Teks Berita") qa_question = gr.Textbox(placeholder="Tulis pertanyaan...", label="Pertanyaan") qa_btn = gr.Button("KIRIM") qa_history = gr.Chatbot(label="Riwayat Tanya Jawab") qa_state = gr.State([]) qa_btn.click( fn=qa_manual, inputs=[qa_question, qa_state, context_input], outputs=[qa_history], show_progress=False ).then(fn=lambda h: h, inputs=qa_history, outputs=qa_state) with gr.Tab("NER"): ner_btn = gr.Button("Ekstrak Entitas") ner_result = gr.HTML() ner_btn.click(fn=ner, inputs=context_input, outputs=ner_result) demo.launch()