multi task app demo
Browse files- app.py +247 -60
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,64 +1,251 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
from huggingface_hub import InferenceClient, InferenceApiError
|
5 |
+
|
6 |
+
# ββ CONFIG & SETUP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
7 |
+
API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
+
if not API_TOKEN:
|
9 |
+
raise ValueError("HF_API_TOKEN environment variable is not set.")
|
10 |
+
|
11 |
+
CLIENT = InferenceClient(provider="hf-inference", api_key=API_TOKEN)
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(
|
15 |
+
format="%(asctime)s %(levelname)s %(message)s",
|
16 |
+
level=logging.INFO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Common timeout for HTTP calls (in seconds)
|
21 |
+
REQUEST_TIMEOUT = 30
|
22 |
+
|
23 |
+
|
24 |
+
# ββ GENERIC CALL WRAPPER ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
25 |
+
def safe_call(fn, *args, **kwargs):
|
26 |
+
"""Run an inference call, catch errors and log them."""
|
27 |
+
try:
|
28 |
+
return fn(*args, **kwargs)
|
29 |
+
except InferenceApiError as e:
|
30 |
+
logger.error(f"Inference API error: {e}")
|
31 |
+
return {"error": f"Inference API error: {e}"}
|
32 |
+
except json.JSONDecodeError as e:
|
33 |
+
logger.error(f"JSON decode error: {e}")
|
34 |
+
return {"error": "Invalid JSON input."}
|
35 |
+
except Exception:
|
36 |
+
logger.exception("Unexpected error")
|
37 |
+
return {"error": "An unexpected error occurred. Please try again."}
|
38 |
+
|
39 |
+
|
40 |
+
# ββ TASK FUNCTIONS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
41 |
+
|
42 |
+
def asr_task(audio_path):
|
43 |
+
if not audio_path:
|
44 |
+
return "Please upload an audio file."
|
45 |
+
return safe_call(
|
46 |
+
CLIENT.automatic_speech_recognition,
|
47 |
+
audio_path,
|
48 |
+
model="openai/whisper-large-v3",
|
49 |
+
timeout=REQUEST_TIMEOUT
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def chat_task(messages_str):
|
54 |
+
if not messages_str.strip():
|
55 |
+
return "Enter messages in JSON format."
|
56 |
+
try:
|
57 |
+
messages = json.loads(messages_str)
|
58 |
+
if not isinstance(messages, list):
|
59 |
+
raise ValueError("Messages must be a JSON list.")
|
60 |
+
except Exception as e:
|
61 |
+
logger.warning(f"Invalid chat input: {e}")
|
62 |
+
return "Invalid input. Please provide a JSON list of `{role,content}` objects."
|
63 |
+
|
64 |
+
response = safe_call(
|
65 |
+
CLIENT.chat.completions.create,
|
66 |
+
model="gpt2",
|
67 |
+
messages=messages,
|
68 |
+
timeout=REQUEST_TIMEOUT
|
69 |
+
)
|
70 |
+
return response.choices[0].message if hasattr(response, "choices") else response
|
71 |
+
|
72 |
+
|
73 |
+
def fill_mask_task(text):
|
74 |
+
if "[MASK]" not in text:
|
75 |
+
return "Your input must contain the token `[MASK]`."
|
76 |
+
return safe_call(
|
77 |
+
CLIENT.fill_mask,
|
78 |
+
text,
|
79 |
+
model="google-bert/bert-base-uncased",
|
80 |
+
timeout=REQUEST_TIMEOUT
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
def qa_task(question, context):
|
85 |
+
if not question or not context:
|
86 |
+
return "Both question and context are required."
|
87 |
+
return safe_call(
|
88 |
+
CLIENT.question_answering,
|
89 |
+
question=question,
|
90 |
+
context=context,
|
91 |
+
model="deepset/roberta-base-squad2",
|
92 |
+
timeout=REQUEST_TIMEOUT
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def summarization_task(text):
|
97 |
+
if len(text.split()) < 5:
|
98 |
+
return "Please provide at least 5 words to summarize."
|
99 |
+
return safe_call(
|
100 |
+
CLIENT.summarization,
|
101 |
+
text,
|
102 |
+
model="facebook/bart-large-cnn",
|
103 |
+
timeout=REQUEST_TIMEOUT
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def text_gen_task(prompt):
|
108 |
+
if not prompt.strip():
|
109 |
+
return "Prompt cannot be empty."
|
110 |
+
resp = safe_call(
|
111 |
+
CLIENT.chat.completions.create,
|
112 |
+
model="gpt2",
|
113 |
+
messages=[{"role": "user", "content": prompt}],
|
114 |
+
timeout=REQUEST_TIMEOUT
|
115 |
+
)
|
116 |
+
return resp.choices[0].message if hasattr(resp, "choices") else resp
|
117 |
+
|
118 |
+
|
119 |
+
def image_classification_task(image_path):
|
120 |
+
if not image_path:
|
121 |
+
return "Please upload an image."
|
122 |
+
return safe_call(
|
123 |
+
CLIENT.image_classification,
|
124 |
+
image_path,
|
125 |
+
model="Falconsai/nsfw_image_detection",
|
126 |
+
timeout=REQUEST_TIMEOUT
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
def feature_extraction_task(text):
|
131 |
+
if not text.strip():
|
132 |
+
return "Input text is empty."
|
133 |
+
return safe_call(
|
134 |
+
CLIENT.feature_extraction,
|
135 |
+
text,
|
136 |
+
model="intfloat/multilingual-e5-large-instruct",
|
137 |
+
timeout=REQUEST_TIMEOUT
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
# ββ GRADIO INTERFACE ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.Markdown("## π HF Inference Multi-Task Demo (CPU Space)")
|
144 |
+
|
145 |
+
with gr.Tabs():
|
146 |
+
|
147 |
+
with gr.TabItem("ASR"):
|
148 |
+
asr_input = gr.Audio(source="upload", type="filepath", label="Upload Audio")
|
149 |
+
asr_output = gr.Textbox(label="Transcript")
|
150 |
+
# Example audio files (replace with actual files in your repo)
|
151 |
+
gr.Examples(
|
152 |
+
examples=["sample1.flac", "sample2.wav"],
|
153 |
+
inputs=asr_input,
|
154 |
+
outputs=asr_output
|
155 |
+
)
|
156 |
+
asr_input.change(asr_task, asr_input, asr_output)
|
157 |
+
|
158 |
+
with gr.TabItem("Chat (LLM)"):
|
159 |
+
chat_in = gr.Textbox(
|
160 |
+
label="Messages (JSON list)",
|
161 |
+
placeholder='[{"role":"user","content":"Hello"}]',
|
162 |
+
lines=3
|
163 |
+
)
|
164 |
+
chat_out = gr.Textbox(label="Bot Reply")
|
165 |
+
gr.Examples(
|
166 |
+
examples=[
|
167 |
+
'[{"role":"user","content":"What is AI?"}]',
|
168 |
+
'[{"role":"system","content":"You are a helpful assistant."},'
|
169 |
+
'{"role":"user","content":"Tell me a joke."}]'
|
170 |
+
],
|
171 |
+
inputs=chat_in,
|
172 |
+
outputs=chat_out,
|
173 |
+
fn=chat_task
|
174 |
+
)
|
175 |
+
|
176 |
+
with gr.TabItem("Fill Mask"):
|
177 |
+
mask_in = gr.Textbox(
|
178 |
+
label="Text with [MASK]",
|
179 |
+
placeholder="The capital of France is [MASK]."
|
180 |
+
)
|
181 |
+
mask_out = gr.JSON(label="Fill Mask Results")
|
182 |
+
gr.Examples(
|
183 |
+
examples=[
|
184 |
+
"The Eiffel Tower is located in [MASK].",
|
185 |
+
"Machine learning models are [MASK] and powerful."
|
186 |
+
],
|
187 |
+
inputs=mask_in,
|
188 |
+
outputs=mask_out,
|
189 |
+
fn=fill_mask_task
|
190 |
+
)
|
191 |
+
|
192 |
+
with gr.TabItem("Q&A"):
|
193 |
+
qa_q = gr.Textbox(label="Question")
|
194 |
+
qa_ctx = gr.Textbox(label="Context", lines=4)
|
195 |
+
qa_out = gr.Textbox(label="Answer")
|
196 |
+
gr.Examples(
|
197 |
+
examples=[
|
198 |
+
["Who wrote 'Pride and Prejudice'?", "Jane Austen was an English novelist known for ..."],
|
199 |
+
["What is photosynthesis?", "Photosynthesis is the process by which green plants ..."]
|
200 |
+
],
|
201 |
+
inputs=[qa_q, qa_ctx],
|
202 |
+
outputs=qa_out,
|
203 |
+
fn=qa_task
|
204 |
+
)
|
205 |
+
|
206 |
+
with gr.TabItem("Summarization"):
|
207 |
+
sum_in = gr.Textbox(label="Text to Summarize", lines=4)
|
208 |
+
sum_out = gr.Textbox(label="Summary")
|
209 |
+
gr.Examples(
|
210 |
+
examples=[
|
211 |
+
"The Industrial Revolution began in Britain in the late 18th century..."
|
212 |
+
],
|
213 |
+
inputs=sum_in,
|
214 |
+
outputs=sum_out,
|
215 |
+
fn=summarization_task
|
216 |
+
)
|
217 |
+
|
218 |
+
with gr.TabItem("Text Generation"):
|
219 |
+
gen_in = gr.Textbox(label="Prompt", lines=2)
|
220 |
+
gen_out = gr.Textbox(label="Generated Text")
|
221 |
+
gr.Examples(
|
222 |
+
examples=[
|
223 |
+
"Once upon a time in a mystical land",
|
224 |
+
"In the future, humans will live on Mars because"
|
225 |
+
],
|
226 |
+
inputs=gen_in,
|
227 |
+
outputs=gen_out,
|
228 |
+
fn=text_gen_task
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.TabItem("Image Classification"):
|
232 |
+
img_in = gr.Image(type="filepath", label="Upload Image")
|
233 |
+
img_out = gr.JSON(label="Classes")
|
234 |
+
gr.Examples(
|
235 |
+
examples=["cat.jpg", "dog.png"],
|
236 |
+
inputs=img_in,
|
237 |
+
outputs=img_out,
|
238 |
+
fn=image_classification_task
|
239 |
+
)
|
240 |
|
241 |
+
with gr.TabItem("Feature Extraction"):
|
242 |
+
fe_in = gr.Textbox(label="Input Text", lines=2)
|
243 |
+
fe_out = gr.Dataframe(label="Embeddings")
|
244 |
+
gr.Examples(
|
245 |
+
examples=["Machine learning is fascinating."],
|
246 |
+
inputs=fe_in,
|
247 |
+
outputs=fe_out,
|
248 |
+
fn=feature_extraction_task
|
249 |
+
)
|
250 |
|
251 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
gradio
|