import streamlit as st import tensorflow as tf from transformers import TFGPT2LMHeadModel, GPT2Tokenizer import pandas as pd import numpy as np tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = TFGPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id) def func(sentence, max_length, temperature): input_ids = tokenizer.encode(sentence, return_tensors='tf') output_list = model.generate( input_ids, do_sample=True, max_length=max_length, temperature=temperature, top_p=0.92, top_k=0, num_return_sequences=5 ) output_strs = [tokenizer.decode(output, skip_special_tokens=True) for output in output_list] return output_strs sentence = st.text_input(label="Sentence to complete") max_length = st.slider(label="Max Length", min_value=5, max_value=25, value=10, step=1) temperature = st.slider(label="Temperature", min_value=0.1, max_value=10.0, value=0.1) if st.button('Click to generate possible completions'): outputs_strs = func(sentence, max_length, temperature) i = 1 for output in outputs_strs: st.write(f"{i}: {output}") i += 1