File size: 9,615 Bytes
fc016ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# === Gradio Demo App: gradio_app.py ===
# This script creates a user-friendly web interface to demonstrate the
# multimodal moderation capabilities of the main FastAPI server.
#
# It interacts with the /v3/moderations endpoint.
# --------------------------------------------------------------------
import base64
import os
import json
import logging
import gradio as gr
import httpx
from dotenv import load_dotenv
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
load_dotenv()
# The URL of your running FastAPI server.
# It's crucial to set this in your .env file for deployment.
API_BASE_URL = os.environ.get("API_BASE_URL", "")
MODERATION_ENDPOINT = f"{API_BASE_URL}/v3/moderations"
# --- NEW: Full list of Whisper V3 supported languages ---
# Mapping user-friendly names to ISO 639-1 codes
WHISPER_LANGUAGES = {
"English": "en", "Chinese": "zh", "German": "de", "Spanish": "es", "Russian": "ru",
"Korean": "ko", "French": "fr", "Japanese": "ja", "Portuguese": "pt", "Turkish": "tr",
"Polish": "pl", "Catalan": "ca", "Dutch": "nl", "Arabic": "ar", "Swedish": "sv",
"Italian": "it", "Indonesian": "id", "Hindi": "hi", "Finnish": "fi", "Vietnamese": "vi",
"Hebrew": "he", "Ukrainian": "uk", "Greek": "el", "Malay": "ms", "Czech": "cs",
"Romanian": "ro", "Danish": "da", "Hungarian": "hu", "Tamil": "ta", "Norwegian": "no",
"Thai": "th", "Urdu": "ur", "Croatian": "hr", "Bulgarian": "bg", "Lithuanian": "lt",
"Latin": "la", "Maori": "mi", "Malayalam": "ml", "Welsh": "cy", "Slovak": "sk",
"Telugu": "te", "Persian": "fa", "Latvian": "lv", "Bengali": "bn", "Serbian": "sr",
"Azerbaijani": "az", "Slovenian": "sl", "Kannada": "kn", "Estonian": "et", "Macedonian": "mk",
"Breton": "br", "Basque": "eu", "Icelandic": "is", "Armenian": "hy", "Nepali": "ne",
"Mongolian": "mn", "Bosnian": "bs", "Kazakh": "kk", "Albanian": "sq", "Swahili": "sw",
"Galician": "gl", "Marathi": "mr", "Punjabi": "pa", "Sinhala": "si", "Khmer": "km",
"Shona": "sn", "Yoruba": "yo", "Somali": "so", "Afrikaans": "af", "Occitan": "oc",
"Georgian": "ka", "Belarusian": "be", "Tajik": "tg", "Sindhi": "sd", "Gujarati": "gu",
"Amharic": "am", "Yiddish": "yi", "Lao": "lo", "Uzbek": "uz", "Faroese": "fo",
"Haitian Creole": "ht", "Pashto": "ps", "Turkmen": "tk", "Nynorsk": "nn", "Maltese": "mt",
"Sanskrit": "sa", "Luxembourgish": "lb", "Myanmar (Burmese)": "my", "Tibetan": "bo",
"Tagalog": "tl", "Malagasy": "mg", "Assamese": "as", "Tatar": "tt", "Hawaiian": "haw",
"Lingala": "ln", "Hausa": "ha", "Bashkir": "ba", "Javanese": "jw", "Sundanese": "su",
}
# Sort languages alphabetically for the dropdown
SORTED_LANGUAGES = dict(sorted(WHISPER_LANGUAGES.items()))
# --- Helper Function ---
def file_to_base64(filepath: str) -> str:
"""Reads a file and converts it to a base64 encoded string."""
if not filepath:
return None
try:
with open(filepath, "rb") as f:
encoded_string = base64.b64encode(f.read()).decode("utf-8")
return encoded_string
except Exception as e:
logging.error(f"Failed to convert file {filepath} to base64: {e}")
return None
# --- Core Logic ---
def moderate_content(text_input, image_input, video_input, audio_input, language_full_name):
"""
Prepares the payload, calls the moderation API, and formats the response.
"""
if not any([text_input, image_input, video_input, audio_input]):
return "Please provide at least one input (text, image, video, or audio).", None
logging.info("Preparing payload for moderation API...")
payload = {
"model": "nai-moderation-latest" # This is the model name expected by our API
}
if text_input:
payload["input"] = text_input
# Gradio provides file paths; we need to convert them to base64
image_b64 = file_to_base64(image_input)
if image_b64:
payload["image"] = image_b64
video_b64 = file_to_base64(video_input)
if video_b64:
payload["video"] = video_b64
audio_b64 = file_to_base64(audio_input)
if audio_b64:
payload["voice"] = audio_b64
# --- NEW: Add selected language to the payload ---
language_code = SORTED_LANGUAGES.get(language_full_name, "en") # Default to 'en' if not found
payload["language"] = language_code
logging.info(f"Audio detected. Using language: {language_full_name} ({language_code})")
logging.info(f"Sending request to {MODERATION_ENDPOINT} with inputs: {list(payload.keys())}")
summary_output = "An error occurred. Please check the logs."
full_response_output = {}
try:
# Using a synchronous client is simpler for this Gradio function
with httpx.Client(timeout=180.0) as client:
response = client.post(MODERATION_ENDPOINT, json=payload)
response.raise_for_status() # Raises an exception for 4xx/5xx errors
data = response.json()
full_response_output = data
if not data.get("results"):
summary_output = "API returned an empty result. This might happen if media processing fails (e.g., a video with no frames)."
return summary_output, full_response_output
# The v3 endpoint returns a single aggregated result
result = data["results"][0]
# Format a nice, human-readable summary
status = "π¨ FLAGGED π¨" if result["flagged"] else "β
SAFE β
"
reason = result.get("reason") or "N/A"
transcribed = result.get("transcribed_text") or "N/A"
# Create a clean list of flagged categories
flagged_categories = [cat for cat, flagged in result.get("categories", {}).items() if flagged]
categories_str = ", ".join(flagged_categories) if flagged_categories else "None"
summary_output = f"""
**Moderation Status:** {status}
---
**Reason:** {reason}
---
**Flagged Categories:** {categories_str}
---
**Transcribed Text (from audio):**
{transcribed}
"""
logging.info("Successfully received and parsed moderation response.")
except httpx.HTTPStatusError as e:
error_details = e.response.text
summary_output = f"HTTP Error: {e.response.status_code}\n\nCould not connect to the moderation service or the service returned an error.\n\nDetails:\n{error_details}"
logging.error(f"HTTP Status Error: {error_details}")
except httpx.RequestError as e:
summary_output = f"Request Error: Could not connect to the API server at {API_BASE_URL}.\nPlease ensure the server is running and the URL is correct."
logging.error(f"Request Error: {e}")
except Exception as e:
summary_output = f"An unexpected error occurred: {str(e)}"
logging.error(f"Unexpected Error: {e}", exc_info=True)
return summary_output, full_response_output
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
gr.Markdown(
"""
# π€ Multimodal Content Moderation Demo
This demo uses a custom API server to perform advanced content moderation.
You can provide any combination of text, image, video, and audio. The system will analyze all inputs together.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Provide Your Content")
text_input = gr.Textbox(label="Text Input", lines=4, placeholder="Enter any text here...")
image_input = gr.Image(label="Image Input", type="filepath")
video_input = gr.Video(label="Video Input")
audio_input = gr.Audio(label="Voice/Audio Input", type="filepath")
# --- NEW: Language selection dropdown ---
language_input = gr.Dropdown(
label="Audio Language (if providing audio)",
choices=list(SORTED_LANGUAGES.keys()),
value="English",
interactive=True
)
submit_button = gr.Button("Moderate Content", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### 2. See the Results")
result_output = gr.Markdown(label="Moderation Summary")
full_response_output = gr.JSON(label="Full API Response")
submit_button.click(
fn=moderate_content,
# --- UPDATED: Add language_input to the list ---
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output]
)
gr.Examples(
examples=[
["This is a test of the system with safe text.", None, None, None, "English"],
["I am going to kill the process on my computer.", None, None, None, "English"],
],
# --- UPDATED: Add language_input to the list ---
inputs=[text_input, image_input, video_input, audio_input, language_input],
outputs=[result_output, full_response_output],
fn=moderate_content
)
if __name__ == "__main__":
logging.info(f"Connecting to API server at: {API_BASE_URL}")
if API_BASE_URL == "http://127.0.0.1:8000":
logging.warning("API_BASE_URL is set to the default local address. Make sure this is correct or set it in your .env file.")
demo.launch(server_name="0.0.0.0", server_port=7860) |